
JAVA 9’S NEW REPL 43 | NIO.2 49 | ADVANCED GENERICS 56 | JRUBY 62

ENTERPRISE JAVA

JULY/AUGUST 2016

ORACLE.COM/JAVAMAGAZINE

JSON-P
PROCESS DATA
EASILY

31
JAVAMAIL
AUTOMATE
ALERTS FROM
JAVA EE APPS

37
JASPIC
AUTHENTICATION
FOR CONTAINERS

25
JSF 2.3
WHAT’S
COMING?

17

http://www.oracle.com/javamagazine

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

01

//table of contents /

COVER ART BY I-HUA CHEN

04
From the Editor
Writing small classes is a universally

prescribed best practice. While simple in

concept, on real projects this presents its

own diiculties.

06
Letters to the Editor
Comments, questions, suggestions,

and kudos

09
Events
Upcoming Java conferences and events

11
JavaOne 2016
The world’s largest Java conference

13
Java Books
Review of Building Maintainable Software

43
Java 9

JShell: Read-Evaluate-Print Loop
for the Java Platform
By Constantin Drabo

Testing code snippets will be part of the

upcoming JDK.

49
New to Java

Modern Java I/O
By Benjamin Evans and David Flanagan

NIO.2 makes many things easier, includ-

ing monitoring directories for changes.

56
New to Java

Generics: The Hard Parts
By Michael Kölling

Wildcards, subtyping, and type erasure

62
JVM Languages

JRuby 9000: Beautiful
Language, Powerful Runtime
By Charles Nutter

A simple language that inspired Ruby on

Rails facilitates complex Java coding.

71
Fix This
By Simon Roberts

Our latest code challenges

61
Java Proposals of Interest
JEP 282 jlink: The Java Linker

70
User Groups
Bucharest JUG

76
Contact Us
Have a comment? Suggestion?

Want to submit an article

proposal? Here’s how.

By Arjan Tijms

New features in JSF resolve long-standing limitations.

25
CUSTOM SERVLET
AUTHENTICATION
USING JASPIC

By Steve Millidge

A little-known Java EE

standard makes it simple to

enforce authentication using

your preferred resources.

31
USING THE JAVA APIS
FOR JSON PROCESSING

By David Delabassée

Two easy-to-use APIs greatly

simplify handling JSON data.

37
USING JAVAMAIL IN
JAVA EE

By T. Lamine Ba

Create web applications that

can send emails.

//table of contents /

17
JAVASERVER FACES 2.3:
WHAT’S COMING

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // JULY/AUGUST 2016

02

EDITORIAL

Editor in Chief
Andrew Binstock

Managing Editor
Claire Breen

Copy Editors
Karen Perkins, Jim Donahue

Technical Reviewer
Stephen Chin

DESIGN

Senior Creative Director
Francisco G Delgadillo

Design Director
Richard Merchán

Senior Designer
Arianna Pucherelli

Designer
Jaime Ferrand

Senior Production Manager
Sheila Brennan

Production Designer
Kathy Cygnarowicz

PUBLISHING

Publisher
Jennifer Hamilton +1.650.506.3794

Associate Publisher and Audience
Development Director
Karin Kinnear +1.650.506.1985

Audience Development Manager
Jennifer Kurtz

ADVERTISING SALES

Sales Director
Tom Cometa

Account Manager
Mark Makinney

Account Manager
Marcin Gamza

Advertising Sales Assistant
Cindy Elhaj +1.626.396.9400 x 201

Mailing-List Rentals
Contact your sales representative.

RESOURCES

Oracle Products
+1.800.367.8674 (US/Canada)

Oracle Services
+1.888.283.0591 (US)

ARTICLE SUBMISSION

If you are interested in submitting an article, please email the editors.

SUBSCRIPTION INFORMATION

Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE

java@halldata.com Phone +1.847.763.9635

PRIVACY

Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or email address not be included in this program, contact
Customer Service.

Copyright © 2016, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise

reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY

DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY

DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. Opinions

expressed by authors, editors, and interviewees—even if they are Oracle employees—do not necessarily reflect the views of Oracle.

The information is intended to outline our general product direction. It is intended for information purposes only, and may not

be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied

upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s

products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly and made available at no cost to qualified subscribers by

Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

* Save $400 over onsite registration. Visit oracle.com/javaone/register for early bird registration dates and details.

 Copyright © 2016, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

REGISTER NOW
Respond Early, Save $400*

September 18–22, 2016 | San Francisco

oracle.com/javaone

Bronze Sponsors

Innovation Sponsor Diamond Sponsor

Gold Sponsor Silver Sponsors

• Learn about Java 9 and beyond

• 450+ educational sessions

• Explore innovations at the Java Hub

• Network with 500+ Java experts

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:jennifer.hamilton%40oracle.com?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:jennifer.s.kurtz%40oracle.com?subject=
mailto:tom.cometa%40oracle.com?subject=
mailto:mark.makinney%40sprocketmedia.com?subject=
mailto:marcin%40sprocketmedia.com?subject=
mailto:cindy%40sprocketmedia.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
mailto:java%40halldata.com?subject=
mailto:java%40halldata.com?subject=
http://oracle.com/javaone

https://zeroturnaround.com/software/xrebel/trial/tshirt/?utm_source=javamag&utm_medium=fullpage&utm_campaign=xrebeltshirtpromo
https://zeroturnaround.com/software/xrebel/trial/tshirt/?utm_source=javamag&utm_medium=fullpage_august&utm_campaign=xrebeltshirtpromo

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

04

//from the editor /

PHOTOGRAPH BY BOB ADLER/GETTY IMAGES

There are few coding practices that, when
followed conscientiously, deliver as much

beneit as writing small classes. Take almost any
desirable metric—simplicity, testability, debug-
ability—and small classes score high. Take almost
any undesirable metric—complexity, error den-
sity, brittleness—and small classes score low. In
addition, various programming rules of thumb
point directly toward smaller classes: the single-
responsibility principle, in particular, as well as
many fundamental refactorings.

With all these beneits, it seems that if you
want to write good code, small classes should
represent a fundamental implementation goal
and class size should be a metric that is con-
stantly kept in mind as code is written.

If you work this way, though, you’ll ind that
for all the advice available on how to write good

code and the wisdom of consultants, there is little
guidance on how to manage the issues that small
classes present.

Small classes have been a favorite concern of
mine for a long time. I’ve written about how to
tease small ones from larger ones, how to think
in terms of small code units, and so on. But over
the years, I have found that small classes—while
delivering the promised beneits—create prob-
lems whose solutions are largely unexplored.

Let’s begin by deining a small class. I deine it
as fewer than 60 lines of code (LOCs). The num-
ber appears arbitrary, but it works in deliver-
ing classes that can be seen in their entirety
with a single page-up or page-down keystroke
in the IDE. This same logic drives NASA’s
“Power of Ten” rule that limits functions also to
60 lines. Classes this size can be read and under-

The Problem of Writing Small Classes
The highly recommended best practice presents a series of challenges that its

advocates rarely address.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://spinroot.com/p10/
http://oracle.com/java

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

05

//from the editor /

stood quickly. Sixty LOCs is not a
hard limit, but beyond it, I start
getting itchy. Almost none of my
classes exceed 70 LOCs. Some
developers ind a numerical limit
objectionable and would prefer
“the minimum LOCs necessary
for the task”—which invariably
leads to classes in which size is no
longer a disciplined constraint—
while a hard number leads you to
review lengthy code looking for
refactorings that simplify it.

Whatever number you settle
on, if you start using it as a
discipline-inducing limit, you
quickly run into several chal-
lenges. The irst is perhaps the
most persistent problem in
computing: naming. As objects
become smaller, more are
created, and more names must
be formulated. FontHandler
becomes FontLocator, Font-
Veriier, FontLoader, FontMetric-
Extractor, and so on. After a
while, you begin to codify a set
of naming conventions that
you use with precision so that
two classes with similar names
can be readily distinguished.
“Inspector” is not the same as
“veriier,” which is not the same
as “validator,” and so on.

This leads to a second problem,
which is the proper grouping of

small classes so that it’s apparent
they go together. This is where
the lack of useful guidelines on
designing Java packages becomes
glaringly obvious. There are very
few useful ideas on the topic
of packaging. Sites use mostly
a seat-of-the-pants approach,
which is rarely the right way to
do things. The trees in my pack-
age hierarchy are bushier than
those of most projects. This pro-
vides beneits in that it’s much
clearer where to look for certain
functionality. In addition, access
restriction can be made very
granular. The disadvantage is
that it’s not always easy to group
classes into smaller packages.
Choosing whether FontDisplay
goes here or is more logically part
of another package can take care-
ful consideration. However, that
kind of review helps reine the
project’s design.

The inal problem is purely
mechanical. In my IDE, I often
have many, many tabs open to
small classes, and I do a lot of
bounding around between the
various windows. At times, this
can be a pain. If all the code were
in one big class, I’d have one place
to go, which is easy. However,
when I got there, I would ind
myself constantly scrolling up

and down, setting bookmarks,
and jumping about inside that
one big class. So, in efect, with
small classes I’ve replaced that
physical activity with my own. I
use multiple windows across two
screens, which solves many of
my problems—at a glance, I can
see the code I need in the open
window.

In sum, working hard to create
small classes presents a series
of challenges that are little dis-
cussed either in the literature or
in the counsel of experts. Given
that diminutive classes make
testability much easier and more
thorough, facilitate legibility
and maintainability, and enforce
object-oriented basics, the extra
work to igure out these chal-
lenges by yourself seems well
worth it.

Andrew Binstock, Editor in Chief

javamag_us@oracle.com

@platypusguy

P.S. In this issue, we continue our
reinement of the magazine’s
design with a more legible code
font that lets us print more
characters per line, and so wrap
code less often. Feel free to send
other suggestions to me at the
address above.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
https://twitter.com/platypusguy
http://oracle.com/java

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

06

//letters to the editor /

Polymorphic Dispatch with Enums

I would like to comment on the article “Making
the Most of Enums” (March/April 2016, page 40). In
that article, Michael Kölling points out how enums
improve type safety and internationalization and how
they allow the easy creation of thread-safe singletons.

While he mentions that “enum declarations are
classes, and enum values refer to objects,” he missed
the opportunity to show how this enables poly-
morphism and allows for more object-oriented and
maintenance-friendly programs.

Building upon the adventure game example, sup-
pose you want to add the “drop” command. You have
added the DROP("drop") constant to the enum and
implemented the dropItem() method. Yet the pro-
gram still does not recognize the command. The
problem is that you failed to add the appropriate case
to the switch statement.

Let us extend the enum declaration further:

public enum CommandWord {

 GO("go") {

 @Override

 public void exec(String secondWord) {

 // logic from the goRoom() method

 }

 },

 // ...

 // the other commands follow a similar pattern

 // ...

 QUIT("quit") {

 @Override

 public void exec(String secondWord) {

 // logic from the quit() method

 }

 };

 private String commandString;

 CommmandWord(String commandString) {

 this.commandString = commandString;

 }

 public String toString() {

 return commandString;

 }

 public abstract void exec(String secondWord);

}

By adding curly braces after the declaration of an
enum constant, you create an anonymous subclass of
CommandWord, which is used only to create the instance
for this speciic constant. By overriding the abstract
exec() method, you add command-speciic behavior
to the individual constants.

With this change in place, the entire switch state-
ment can be replaced with a single line:

commandWord.exec(secondWord);

If you now want to add the drop command, you only
have to add another constant to the enum declaration.
And if you forget to override the exec() method, the
compiler will complain about it because it was deined
as abstract in the CommandWord enum itself.

—Tobias Stensbeck

Michael Kölling responds: You make a very good point,

and I did indeed miss an opportunity to go further and

discuss polymorphic dispatch with enum methods, and

how this can further improve the code. The gain you

describe—avoiding the switch statement and replacing

MARCH/APRIL 2016

ENUMS 40 | JPA CRITERIA 45 | GOLO LANGUAGE 54

ORACLE.COM/JAVAMAGAZINE

INSIDE THE

JVM’S CODE

CACHE

24
HOW JAVA

COLLECTIONS

BECAME LAZY

28
PROCESSING

ANNOTATIONS

35
G1 AND

SHENANDOAH:

THE NEW GARBAGE

COLLECTORS

20
UNDERSTANDING

WHAT THE JIT IS

DOING

14

 Inside Java

and the JVM

MARCH/APRIL 2016

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

07

//letters to the editor /

it with a single polymorphic call—is one of the most sig-

niicant improvements that come out of the replacement
of constants with enums. It improves maintainability and

removes the implicit coupling. You discuss the method and

advantages perfectly, and all that remains for me is to

thank you for bringing this up.

The Misery of Project Hosting?

In “The Miserable Business of Hosting Projects” (May/
June 2016, page 4), Andrew Binstock speculates on
whether the current model of free open source host-
ing is sustainable, examining several hosting ser-
vices, including GitLab. While I can’t speak for other
companies, I can share thoughts from us at GitLab on
several of the points mentioned in the piece.

In regard to the industry as a whole, it has seen
some growing pains but it’s not quite as “miserable”
as the title of the article suggests. The freemium
model is a well-known pricing strategy for SaaS
[software-as-a-service]–based companies across
many markets, not just hosting projects, with compa-
nies that have free solutions also ofering paid ver-
sions to help customers pay only for what they need,
along with allowing them to test-drive services.

We see this pricing strategy following the same
path as email, which now exists as a free service with
additional features (extra storage) available at an
additional cost. In terms of cost eiciency, we’ve seen
success through an open core model with a strong
community vital to the development and implemen-
tation of new features. Other companies take a simi-
lar approach, taking revenue from an “Enterprise”
or paid version of a service in conjunction with addi-
tional paid options to keep up with the growth in sub-
scriptions for their free editions. Mr. Binstock men-
tioned that services currently free to developers using

hosting services will eventually have to be paid for,
but we see a future for free baseline features.

Although companies involved with hosting projects
have either discontinued them or shut their doors,
hosting projects will remain a vital, if not ubiquitous,
part of the developer community as the demand for
digital content and increased collaboration continues
to grow.

—Job van der Voort
Vice President of Product, GitLab

Codehaus and What Came Next

Re: the editorial “The Miserable Business of Hosting
Projects,” I consider my involvement with the for-
mer Codehaus to be one of the deining aspects of
my professional career. As folks who participated in
the Codehaus know, the members were known as
“hausmates” and many personal relationships were
formed through the involvement of project partici-
pants. These relationships form a web of many of the
bright stars of the industry, across ThoughtWorks,
Walmart, DRW, Google, Square, Twitter, Red Hat,
and others.

The Codehaus always tried to be pragmatic, in order
to ofer the best environment possible. This allowed
us to take support from Atlassian for its suite of
tools; from JetBrains for licenses to its IDEs; and
others including Sonar, which grew at the Codehaus
itself. Additionally, we were always thankful for
the support of Matthew Porter and his company,
Contegix. I’d be completely remiss if I did not mention
Ben Walding, who kept the Codehaus operational for
much of its lifetime. (I was merely a igurehead.)

The article rings true regarding how GitHub ate
everyone’s lunch. I love GitHub, and it has knocked
the ball out of the park. While the footprint of its

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

08

//letters to the editor /

services is smaller than that of the Codehaus, it’s
augmented by other organizations, such as Travis CI,
CloudBees, and Google Groups. One of the leading
points of the Codehaus Manifesto was acknowledging
strong project leadership. The current combination of
GitHub/GitLab, providers of continuous integration,
and so on deliver such leadership within a project.

—Bob “The Despot” McWhirter
Cofounder, Codehaus

Erratum

In the May/June issue, in Mr. Kölling’s article
[“Understanding Generics,” page 45], he several times
uses HashSet() in his code examples. But I believe
that he meant to use HashMap(), which will actually
work in the code he presents.

—Bibhaw Kumar

Michael Kölling responds: You’re quite right. HashSet()

has only one generic parameter. My apologies for the

confusion this caused.

Where Are the Back Issues?

Several readers have inquired about the lack of access
to back issues. This is a temporary problem that
occurred when we switched content delivery net-
works. It should be resolved by press time or shortly
thereafter. Our apologies for the inconvenience.

Contact Us

We welcome comments, suggestions, grumbles,
kudos, article proposals, and chocolate chip cookies.
All but the last two might be edited for publication.
If your note is private, indicate this in your message.
Write to us at javamag_us@oracle.com. For other
ways to reach us, see the last page of this issue.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
http://oracle.com/java

09

ORACLE.COM/JAVAMAGAZINE // JULY/AUGUST 2016

//events /

PHOTOGRAPH BY ERIC E CASTRO/FLICKR

JavaOne SEPTEMBER 18–22

SAN FRANCISCO, CALIFORNIA

The ultimate Java gathering celebrates its 20th year. JavaOne features
hundreds of sessions and hands-on labs. Topics covered include the core
Java platform, security, DevOps, IoT, scalable services, and development
tools. Georges Saab, vice president of development for the Java Platform
Group at Oracle and chair of the OpenJDK governing board, and Mark
Reinhold, chief architect of the Java Platform Group, are slated to speak
at the event, as are many members of the Java development team. Highly
anticipated Java 9 release enhancements will be presented and discussed.
(See page 11 for more information.)

JVM Language Summit

AUGUST 1–3

SANTA CLARA, CALIFORNIA

The JVM Language Summit is
an open technical collabora-
tion among language design-
ers, compiler writers, tool
builders, runtime engineers,
and architects who target the
JVM. This year’s event will be
held in Oracle’s auditorium.
Presentations will run in a
single track and are allotted 45
minutes each (including ques-
tions). Workshop sessions will
run for 60 minutes, with two
or more sessions in parallel.
Breakfast and lunch are served
onsite. Breakout rooms are
available for workshops, con-
versation, and ad hoc consul-
tations. Presentations will be
recorded and made available to
the public.

DevOps Week DC

AUGUST 15–19

WASHINGTON DC

DevOps Week features a series
of specialized courses designed
to help organizations create
an environment where the
building, testing, and releas-
ing of software can happen
more rapidly and more reli-

ably. Subject matter is aimed
at software developers, engi-
neers, project managers, qual-
ity assurance specialists, and
test managers. Participants get
both one-on-one interaction
with instructors and opportu-
nities to network with other
software professionals.

JavaZone

SEPTEMBER 6–8

OSLO, NORWAY

This year marks the 15th
anniversary of JavaZone. The
event consists of a day of
workshops followed by two
days of presentations and
more workshops. Last year’s
event drew more than 2,500
attendees and featured 150
talks covering a wide range of
Java-related topics.

JDK IO

SEPTEMBER 13–15

COPENHAGEN, DENMARK

This annual event hosted by
the Danish Java User Group
consists of a two-day confer-
ence followed by one day of
workshops. The focus is on all
things Java: the language, the
platform, the frameworks, and
the virtual machine.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://www.oracle.com/javaone/agenda.html
http://openjdk.java.net/projects/mlvm/jvmlangsummit/
http://www.sqetraining.com/training/events/devopsweek
https://2016.javazone.no
http://jdk.io/25-jdk-io-2016/

10

//events /

ORACLE.COM/JAVAMAGAZINE // JULY/AUGUST 2016

Architecture Conference is explor-
ing evolutionary architecture to
relect the broadening of the ield,
encompassing new disciplines
such as DevOps. Topics include
strategies for meeting business
goals, developing leadership
skills, and making the conceptual
jump from software developer
to architect.

VOXXED Days THESSALONIKI

OCTOBER 21

THESSALONIKI, GREECE

The inaugural VOXXED Days
event in Thessaloniki is a devel-
oper conference that promises
expert speakers, core developers
of popular open source technolo-
gies, and professionals willing to
share their knowledge and experi-
ences. Former Oracle Technology
Evangelist Simon Ritter is
scheduled to present “JDK 9: Big
Changes to Make Java Smaller.”

Devoxx

NOVEMBER 7–11

ANTWERP, BELGIUM

Devoxx is one of the largest
mostly Java conferences in the
world, with numerous experts
from the US and Europe present-
ing a wide range of sessions on all
aspects of Java development.

W-JAX

NOVEMBER 7–11

MUNICH, GERMANY

W-JAX is a conference focused
on Java, architecture, and soft-
ware innovation. More than 160
presentations on technologies
and languages ranging from Java,
Scala, and Android, to web pro-
gramming, agile development
models, and DevOps are planned.
The main conference takes place
November 8–10, with workshops
scheduled on November 7 and 11.
(No English page available.)

Special Note: Event Cancellation

QCon Rio

OCTOBER 5–7

RIO DE JANEIRO, BRAZIL

The organizers report: “Faced
with an unstable political and
economic environment . . . we
considered it prudent to cancel our
edition of QCon 2016. We empha-
size that this decision does not
afect the preparation of QCon
São Paulo 2017.”

Have an upcoming conference
you’d like to add to our listing?
Send us a link and a description of
your event four months in advance
at javamag_us@oracle.com.

PHOTOGRAPH BY CCHANA/FLICKR

Strange Loop

SEPTEMBER 15–17

ST. LOUIS, MISSOURI

Strange Loop is a multi disciplin-
ary conference that brings
together developers and think-
ers in ields such as emerging
languages, alternative databases,
concurrency, distributed systems,
security, and the web.

JAX London

OCTOBER 10–12

LONDON, ENGLAND

JAX London is a three-day confer-

ence for cutting-edge software
engineers and enterprise-level
professionals, bringing together
the world’s leading innovators in
the ields of Java, microservices,
continuous delivery, and DevOps.
Hands-on workshops take place
on October 10, followed by confer-
ence sessions, keynotes, and expo.

O’Reilly Software Architecture
Conference

OCTOBER 19–21

LONDON, ENGLAND

This year, the O’Reilly Software

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
http://voxxeddays.com/thessaloniki
https://devoxx.be/
https://jax.de
mailto:http://qconrio.com?subject=
mailto:javamag_us%40oracle.com?subject=
http://www.thestrangeloop.com
https://jaxlondon.com
http://conferences.oreilly.com/software-architecture/
http://conferences.oreilly.com/software-architecture/

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

11

//conference /

JavaOne San Francisco, the central Java conference of
the year, will be held September 18–22 at its custom-

ary site—a pair of hotels near Moscone Center in down-
town San Francisco, California. As usual during the last
20 years of the conference, the irst event is the opening
keynote, on Sunday, September 18. The next four days
see in-depth tutorials in the morning and more than
300 presentations running from late morning until early
evening. Evenings are set aside for Birds of a Feather
meetings, which are informal gatherings of developers
who want to compare notes and share insights on a par-
ticular topic.

If you’ve ever attended JavaOne, you know that experts
deliver the tutorials and presentations. Many of these
experts are members of the core Java development team,
Java Champions, or JavaOne Rock Stars. (This last title is
accorded to JavaOne speakers whose previous sessions
were among the most highly rated.)

The sessions in this year’s event are divided into seven
tracks on the following topics:

■■ The core Java platform, which has more than a dozen
sessions dedicated to Java 9 and components of JDK 9
and half as many focused on illuminating the dark
corners of Java 8

■■ Emerging languages, such as the JVM languages we
cover in every issue—Kotlin, Groovy, Scala, and
others—as well as cutting-edge languages that are
emerging in new domains

■■ Cloud and server-side development, focusing on Java EE;
enterprise technologies such as those discussed in this
issue; and all things cloud, especially microservices

■■ Devices, including coverage of the Internet of Things
and Java ME, among other topics

■■ Java clients and user interfaces, highlighted in 35 ses-
sions, 20 of which are on JavaFX

■■ Development tools
■■ DevOps and methodologies, focusing mainly on auto-

mation but also featuring sessions on design, code
quality, and project management

The conference is preceded on Saturday, September 17,
by JavaOne4Kids, a series of workshops and tutorials for
programmers and programmer-hopefuls from ages 10 to
18. On Sunday, September 18, there are full-day inten-
sives, called Java University, which are separate events,
paid for separately and held at a diferent venue. Finally,
there is a trade-show component to JavaOne, with
more than 40 vendors available to present products and
answer questions.

JavaOne is a deep dive into all things Java and the place
to meet and listen to the world’s premier Java experts
and speakers.

 Main JavaOne site

 Registration

 Catalog of sessions (viewable by track)

JavaOne 2016
The largest Java conference is again a must-attend event.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.oracle.com/javaone/index.html
https://www.oracle.com/javaone/register/index.html
https://oracle.rainfocus.com/scripts/catalog/oow16.jsp

ORACLE.COM/JAVAMAGAZINE // JULY/AUGUST 2016

13

There are many books available
on writing good code. They dig
into a bag of well-known tips
and recommendations that are
aimed at beginner and interme-
diate programmers. The prob-
lem with some of these books
is that it’s hard to tell how the
authors are qualiied to dole
out their advice. Most authors
of these texts are consultants,
which suggests that they see a
wide range of code. However,
most consultants work within
a narrow range of industries
and don’t often stray into areas
where programming is done
substantially diferently. For
example, can authors credibly
discuss rules for testability if
they’ve never written software
that could cost lives when errors
occur? Can authors who have no
experience proving code correct
speak with authority on writing
correct code?

One group of professionals
comes close to meeting the high

level of expertise to be qualiied
as authors: practitioners of soft-
ware engineering, the discipline
that quantiies software devel-
opment via analysis of thousands
of projects from all areas of
programming. The problem is
that most software engineering
experts don’t examine coding
style and so, as a ield, they’ve
said relatively little on the topic.
The principal author of this book
and his colleagues come close
to this level of qualiication,
though. For 15 years, they’ve
run the Software Improvement
Group, which studies software
quality quantitatively based in
part on coding style.

From this work, they came
up with 10 guidelines, most of
which will be familiar (write
small units of code, use loose
coupling, automate tests, and so
on). They present them in the
context of a prescriptive model
of maintainability, which has
strict numerical requirements

for each guideline for code that
aims to be in the topmost tier
of quality. For example, on the
rule against redundant code, the
authors state that their model
allows no more than 4.6 percent
of lines of code to be redundant.
That’s helpful data, and it under-
scores the fact that guidelines
cannot always be followed 100
percent of the time. I’ll come
back to this in a moment.

Each guideline is presented, its
raison d’être explained, its appli-
cation demonstrated, and the
counterarguments to it contested.
This last part is an imaginative
addition that targets the reasons
developers tell themselves for not
obeying a guideline.

The examples chosen for each
guideline contain problematic
code and show the resolution,
frequently relying on tried-and-
true techniques. For example,
to reduce duplicate code, the
authors wisely suggest using
the Extract Method and Extract

//java books /

BUILDING MAINTAINABLE SOFTWARE (JAVA EDITION)
By Joost Visser (principal author)

O’Reilly Media

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://shop.oreilly.com/product/0636920049159.do

ORACLE.COM/JAVAMAGAZINE // JULY/AUGUST 2016

14

//java books /

Superclass refactorings. These
examples are useful although not
suiciently numerous to be a guide
for readers who are keen to imple-
ment the suggestions fully. (For
that, I recommend Martin Fowler’s
classic, Refactoring.)

Some implementation sugges-
tions strike me as dubious. For
example, in the chapter on
avoiding complexity—which is
measured solely via cyclomatic
complexity—the authors unwisely
dig into the switch statement. The
switch construct is a known weak-
ness in the cyclomatic complexity
measure, which greatly overesti-
mates its complexity. In an exam-
ple of associating colors with the
lags of six European nations, the
authors try to prove that a forgot-
ten break statement in the six-way
switch is the result of complexity.
Problems that arise from complex-
ity are generally the inability to
understand code and how to ix
it, rather than an omission that
is detected by all code analyzers.
The authors suggest that the ideal
solution is to create six separate
classes—one for each country—
instantiate each one, and put the
resulting objects into a HashMap.

This solution is suboptimal
because the uniqueness of key

values in a switch are no longer
enforced in a HashMap. (Adding
objects with the same key to a
HashMap simply overwrites exist-
ing entries without any error.) The
solution is also weak because if
we handle the lags of, say, Africa,
surely writing by hand 54 classes
is more complex than one large
switch statement. The proposed
approach also shows a lack of
understanding of enums in Java,
which are full classes and guaran-
teed to maintain the unique keys.
In addition, by using an enum dec-
laration, all 54 classes for African
lags are generated by the compiler.
And the EnumMap gives you the data
structure you want.

Although I wish the book more
thoroughly explored topics and
I have quibbles with some of the
proposed solutions, the overall
level of this work is better than
many other volumes that advise
how code should be written. It
certainly can be recommended to
beginners and early intermediate
programmers and those whose
work shows a repeated problem in
code reviews. —Andrew Binstock

Get Java
Certified
Oracle University

 Get noticed by hiring managers

 Learn from Java experts

 Join online or in the classroom

 Connect with our Java

certification community

Upgrade & Save 35%*

Save 35% when you upgrade or advance your existing Java certification. Offer expires December 31, 2016. Click for further details, terms, and conditions.

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=930&sc=%20OUNV160624P00129

https://www.jetbrains.com/idea/specials/idea/idea.html?utm_source=javamagazine&utm_medium=banner&utm_content=capable-and-ergonomic&utm_campaign=idea

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

16
ART BY I-HUA CHEN

The Profusion of
Enterprise Services

T
he history of Java in the enterprise is the story
of the evolution of a complex knot of technolo-
gies into a palette of services that can be used
collectively or individually. This evolution par-

allels the progress of services in general from tightly
bundled to loosely coupled. This direction continues in
the present with the design and implementation of so-
called microservices.

In this issue, we examine some services that are used
in enterprise apps either with containers or in full-scale
Java EE apps. In the latter grouping is an update on
JSF 2.3 (page 17), which is one of the most actively evolv-
ing standards. Our article on JavaMail (page 37) shows a
classic Java EE service that can easily be used with other
kinds of apps. Its value is not so much in building mail
servers and readers but rather in enabling apps to send
out alerts and updates to sysadmins or users.

JASPIC (page 25), the little-known but potent method
of implementing custom security in applications, shows
how much services can be created as standalone mod-
ules that plug into larger applications. Finally, for devel-
opers new to Java services, we include a tutorial on using
JSON-P (page 31), the oicial libraries for handling JSON
in Java.

We extend our series on JVM languages with an article
on JRuby (page 62) written by its principal developer,
Charlie Nutter. Our ongoing exploration of features in
the upcoming Java 9 release examines JShell (page 43),
the interactive REPL for Java. And, of course, we con-
tinue with our tutorials, detailed quiz, letters from
readers, book review, and other content we expect
you’ll ind interesting.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

17

//enterprise java /

JavaServer Faces (JSF) is the component-based model-
view-controller (MVC) framework in Java EE. It was irst

included in Java EE 5 in 2006, although it had been available
separately for two years prior to that. During its 12-year exis-
tence, JSF has reinvented itself several times.

JSF History up to Recent Times

In version 1.2, JSF transitioned from a separate framework to
being integrated in Java EE, which led to ixing some major
issues regarding JSP compatibility and removing JSF’s own
expression language (EL) in favor of the language provided
by JSP.

JSF 2.0 in 2009 was the largest evolutionary step to date:
postbacks, a heavy view state, and encapsulation of links
(navigation rules) were all de-emphasized in favor of REST-
style verbs, limited support for the MVC action pattern, and a
much smaller view state (efectively abandoning the restore-
view concept and instead rebuilding a view from scratch after
a postback).

JSF 2.2, which appeared in 2013, continued the direction of
JSF 2.0 by further de-emphasizing state with the introduction
of a completely stateless mode, de-emphasizing components
somewhat by introducing syntax to create pages directly in
HTML (with only a special namespace attribute to connect
the syntax to the server-side logic), and more support for the
MVC action pattern.

While Contexts and Dependency Injection (CDI) had already
transparently replaced the JSF native bean facility in JSF 2.0,
some native features—such as the often-used view scope—
kept people tied to native managed beans. JSF 2.2 started the
alignment with CDI by introducing a CDI-compatible view
scope as well as basing its new low scope directly on CDI.

Were JSF created today, it would likely be based fully on
CDI to begin with. That is, most of the factories and plugin
points that JSF ofers today would be based on the CDI bean
manager, CDI extensions, and decorators. While this would
certainly be desirable for new projects, such a full re-creation
of JSF would be diicult, if not impossible, to keep backward-
compatible. One of the virtues of JSF (and Java EE in general)
is a strong focus on backward compatibility: 10-year-old JSF
applications should still largely or even fully run on the very
latest versions of Java EE. This often makes it relatively pain-
less to upgrade. Instead of facing a large amount of up-front
work in order to migrate to a newer version of Java EE, exist-
ing code can run “as is,” while the application is updated
piece by piece to take advantage of newer APIs.

In the light of this history, JSF 2.3 will align further with
CDI, but it will do so in a backward-compatible way and pro-
vide switches for reverting back to earlier behavior. JSF 2.3
will also take advantage of Java 8 where possible and will
take advantage of additional Java EE services, such as the
WebSocket support that was introduced in Java EE 7.

ARJAN TIJMS

JavaServer Faces 2.3:
What’s Coming
New features promise to resolve long-standing limitations.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

18

//enterprise java /

In this article, I demonstrate two features that have largely
been completed as of version 2.3 milestone 6 of the reference
implementation. They are CDI alignment with regard to con-
verters and validators, injection, and EL resolution; and using
bean validation for multicomponent validation. I also show two
features that are well underway but have not been completed
at the time of writing this article. They are extensionless URLs,
and programmatic and annotation-based coniguration.

To follow this article, you need to be familiar with Java EE
technologies and JSF concepts. It’s not intended to be an
introductory tutorial.

CDI Alignment

JSF has supported @Inject-based injection in many of its arti-
facts since JSF 2.2. This ability works much like how a servlet
supports @Inject without actually being a CDI bean. There’s
a service provider interface (SPI) that each application server
vendor needs to implement to provide injection services.
In the case of Oracle’s open source implementation of JSF,
Mojarra, this is the com.sun.faces.spi.InjectionProvider
interface.

While this approach provides an abstraction over the actual
injection service, which is occasionally useful by itself, its
disadvantage is obviously that it’s a nonstandard interface
that needs to be implemented separately for each JSF imple-
mentation and each Java EE application server that wishes to
fully support JSF. This not only creates an N x M proliferation
problem that prohibits freely mixing and matching imple-
mentations, but it also greatly limits the extent to which CDI
features can be supported. For example, a PhaseListener may
support @Inject, but it does not support a scope, can’t be
decorated, and can’t contain interceptors, and the injection
points generally can’t be modiied using CDI extensions.

For a limited number of artifacts (converters, validators,
and behaviors), JSF 2.3 takes a diferent approach. A variant
of those artifacts is available that does not rely on a propri-

etary SPI, such as the aforementioned InjectionProvider,
but instead uses genuine CDI beans. Efectively, JSF uses the
standardized BeanManager here as the mechanism to both
obtain those artifacts and to provide injection and all the
other services that come for free when CDI is used.

For backward-compatibility goals, the native lookup and
injection machinery is retained. In fact, behind the scenes,
Mojarra currently uses an old native converter that delegates
to the CDI-based converter to transparently integrate this
newer type of converter into the runtime. (This is a trick
that’s seen more often in Java EE.)

CDI-Based EL Resolver

Another area where JSF 2.3 replaces its own functionality
with that of CDI is with respect to the EL resolver for implicit
objects. Implicit objects are the variables that you can use
via EL on, for example, a Facelet such as #{facesContext},
#{request}, #{param}, and so on. Currently the JSF spec
states that these objects should be resolved via a JSF-speciic
EL resolver.

CDI, however, already provides a universal EL resolver. The
main advantage of using this resolver is that JSF can auto-
matically take advantage of speciic performance improve-
ments, and using the CDI resolver releases JSF from the bur-
den of having to duplicate similar improvements and tunings
in its own resolver.

The way the universal CDI EL resolver works is by having
so-called built-in Bean<T>s available, which have a name (the
implicit object’s name) and a create() method that produces
the implicit object itself. Almost a side efect from the point
of view of EL resolving is the fact that by using Bean<T>, those
very same implicit objects can also trivially be made available
for injection. Furthermore, a scope can be set. Such scope will
function as a kind of cache and might further help with per-
formance, although care must be taken that the scope accu-
rately relects the lifetime of the implicit object.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://javaserverfaces.java.net/

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

19

//enterprise java /

The following code shows an example of a builder for a
Bean<T>:

public class HeaderValuesMapProducer extends

 CdiProducer<Map<String, String[]>> {

 public HeaderValuesMapProducer() {

 super.name("headerValues")

 .scope(RequestScoped.class)

 .qualifiers(

 new HeaderValuesMapAnnotationLiteral())

 .types(

 new ParameterizedTypeImpl(

 Map.class,

 new Type[]{String.class,

 String[].class}),

 Map.class,

 Object.class)

 .beanClass(Map.class)

 .create(e ->

 FacesContext.getCurrentInstance()

 .getExternalContext()

 .getRequestHeaderValuesMap());

 }

}

Multicomponent Validation

One important reason for using a web framework such as JSF
is that it provides well-deined facilities for validating data
coming from the client. In JSF, this works by attaching either
a native validator to the source side (the component, such as
input text) or a bean validation constraint to the target side
(the backing bean property).

In both cases, validation works only for input coming in via
a single component. While this works great for validating that
a password is at least eight characters, it doesn’t help with the

requirement that a password from the main input ield be the
same as one from the conirmation input ield.

The need for multicomponent validation was recognized
long ago and, in fact, the very irst issue ever publicly iled
for JSF asked for exactly this functionality. Historically, solu-
tions to this problem were found in creating special compo-
nents (such as a single component with two input ields, one
for the main entry and one for the conirmation), using spe-
cial multicomponent validators from utility libraries such as
OmniFaces, or just validating manually in the action method.

In all this time, this basic problem was never addressed at
a foundational level. JSF 2.3 has taken an initial attempt at
resolving this problem by again utilizing an existing platform
service: class-level bean validation.

The idea here is that a special constraint validator is
attached to a backing bean. Per the bean validation rules, this
attachment happens by irst deining a special annotation,
then deining an implementation of ConstraintValidator,
then linking the annotation to the ConstraintValidator
via an attribute on the annotation, and then annotating the
backing bean with this.

The following code shows an example:

@Named @RequestScoped

@ValidIndexBean(groups =

 java.util.RandomAccess.class)

public class IndexBean implements

 ConstraintValidator<ValidIndexBean, IndexBean> {

 @Constraint(validatedBy = IndexBean.class)

 @Target(TYPE) @Retention(RUNTIME)

 public @interface ValidIndexBean {

 String message() default "Invalid Bean";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default{};

 }

 public void initialize(

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

20

//enterprise java /

 ValidIndexBean constraintAnnotation) {}

 public boolean isValid(

 IndexBean other,

 ConstraintValidatorContext context) {

 return other.getFoo().equals(other.getBar());

 }

 @NotNull

 private String foo;

 @NotNull

 private String bar;

 // + getters/setters

}

For a reusable validator, such as @Email, which can be applied
to many diferent ields in diferent beans, this work is surely
worth it. Multicomponent validation for backing beans is,
however, often more ad hoc, and for a one-of validation case
for a single bean, the number of moving parts is perhaps a bit
too much.

Alternatively, a library of somewhat more-reusable valida-
tors can be created—for example, the bean validation coun-
terparts of the OmniFaces multicomponent validators such as
validateEqual, validateOneOrMore, validateOneOrNone, and
so on.

To contrast with the example above, I’ll show an example
of a reusable validateEqual validator that uses an EL-enabled
attribute to specify the bean properties that should be vali-
dated. Note that using EL for this is just an example and there
are certainly other feasible options, such as marking the
properties with annotations.

I’ll irst deine the validation annotation, this time
separately:

@Constraint(validatedBy = ValidateEqualValidator.class)

@Target(TYPE) @Retention(RUNTIME)

public @interface ValidateEqual {

 String message() default "Invalid Bean";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default {};

 String[] inputs();

}

Note the extra attribute inputs.

Then the actual validator can be defined:

public class ValidateEqualValidator implements

 ConstraintValidator<ValidateEqual, Object> {

 private List<String> inputs;

 public void

 initialize(ValidateEqual constraintAnnotation) {

 this.inputs =

 asList(constraintAnnotation.inputs());

 }

 public boolean

 isValid(Object bean,

 ConstraintValidatorContext ctx) {

 return new

 HashSet<>(collectValues(bean, inputs))

 .size() == 1;

 }

}

This validator works by leveraging the platform-provided
ELProcessor from the EL 3.0 spec to easily obtain the prop-
erty values from the bean that is being validated. This is
done as follows:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

21

//enterprise java /

public static List<Object> collectValues(Object bean) {

 ELProcessor elProcessor = getElProcessor(bean);

 return inputs.stream()

 .map(input -> elProcessor.eval(input))

 .collect(toList());

}

A fully functional ELProcessor for usage in a Java EE environ-
ment can be obtained by just instantiating a new instance,
and then providing it with the ELResolver from the CDI bean
manager. This can be done as shown below:

public static ELProcessor getElProcessor(Object bean) {

 ELProcessor elProcessor = new ELProcessor();

 elProcessor.getELManager()

 .addELResolver(

 CDI.current()

 .getBeanManager()

 .getELResolver());

 elProcessor.defineBean("this", bean);

 return elProcessor;

}

Notice, in particular, that in the getElProcessor() method,
the bean to be validated is being added to the ELProcessor
context under the "this" name. This approach will be used
when the properties that should be validated are deined
shortly. (As a side note, it’s perhaps interesting to realize that
four diferent Java EE specs are used together here rather
seamlessly: those for JSF, bean validation, EL, and CDI.)

Finally, the backing bean is annotated again, but this time
with the reusable validator:

@Named

@RequestScoped

@ValidateEqual(

 groups = RandomAccess.class,

 inputs={"this.foo", "this.bar"})

public class IndexBean {

 @NotNull

 private String foo;

 @NotNull

 private String bar;

 // + getter/setters

}

Note here that the inputs attribute is initialized with EL refer-
ences to the two properties that should be validated together.

In both cases, the part of a Facelet containing the actual
input components looks as follows:

01 <h:form>

02 <h:inputText value="#{indexBean.foo}">

03 <f:validateBean validationGroups =

04 "javax.validation.groups.Default,

05 java.util.RandomAccess" />

06 </h:inputText>

07

08 <h:inputText value="#{indexBean.bar}">

09 <f:validateBean validationGroups =

10 "javax.validation.groups.Default,

11 java.util.RandomAccess" />

12 </h:inputText>

13

14 <f:validateWholeBean value="#{indexBean}"

15 validationGroups="java.util.RandomAccess"/>

16

17 <h:commandButton value="submit" />

18 </h:form>

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

22

//enterprise java /

[Lines 4 and 5 are wrapped due to space constraints and
should be entered as a single line, as are lines 10 and 11. —Ed.]
A rather important aspect of full class bean validation in
combination with JSF is that the bean seen by the valida-
tor is a copy of the backing bean and not the actual backing
bean. The reason for this is that the JSF validation semantics
demand that the model (the backing bean) is not updated
when any validation or conversion failure happens. However,
full class bean validation can happen only after the bean has
been fully updated. To break this mismatch, the runtime
irst makes a copy of the backing bean, updates this copy,
and validates it. Only if all validation constraints pass is the
actual backing bean updated.

Extensionless URLs

JSF is implemented internally via a servlet, the so-called
FacesServlet, which listens to requests that have a spe-
ciic pattern. By default, this pattern includes "/faces/*",
"*.jsf", "*.faces", and, as of JSF 2.3, "*.xhtml". Users can
set their own pattern in web.xml using the same servlet syn-
tax that’s used to map any servlet to a URL pattern.

As can be seen from the information above, both path map-
ping and extension mapping are supported. An example of path
mapping would be http://example.com/faces/page.xhtml,
while an example of extension mapping would be something
like http://example.com/page.jsf.

In modern web applications, it’s often desirable to have
“clean” URLs—that is, URLs that speciically don’t have an
extension and generally don’t have any kind of clutter in
them. Unfortunately, JSF does not support such URLs out of
the box. Curiously, even when you are using path mapping, an
extension is still required, as shown above.

Clean URLs in JSF can be obtained by using third-party
libraries, such as PrettyFaces or OmniFaces, but this kind of
functionality is now deemed to be suiciently well under-
stood and mature that it qualiies for inclusion in JSF itself.

The goal for extensionless URLs in JSF 2.3 is threefold:
First, path mapping should work without an extension.

For example, a URL such as http://example.com/faces/page
should work out of the box.

Second, exact mapping should be oicially supported. For
example, a URL such as http://example.com/page should
work when the following mapping is present in web.xml:

<servlet>

 <servlet-name>Faces Servlet</servlet-name>

 <servlet-class>

 javax.faces.webapp.FacesServlet

 </servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>Faces Servlet</servlet-name>

 <url-pattern>/page</url-pattern>

</servlet-mapping>

Third, the most ambitious part of the goal is that a URL
such as http://example.com/page should work without
requiring the user to map /page (or any page) explicitly by
using exact mapping, but rather it should work by setting
only a single coniguration option.

At press time, it’s not yet clear how the third goal should be
implemented, but a possible approach would be adding a new
listViewResources() method to the ResourceHandler, and
then taking advantage of the Servlet 3.0 spec’s programmatic
mapping during application startup to automatically add
exact mappings for all view resources (for example, Facelets)
that are handled by a given ResourceHandler.

Programmatic and Annotation-Based Configuration

High-level declarative coniguration in JSF is done using
either context parameters in web.xml or the dedicated
faces-config.xml iles. Additionally, there are some

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jdevelopment.nl/jsf-22/#809

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

23

//enterprise java /

lower-level options available, such as coniguration via the
Application class or programmatically by providing the con-
tent of a faces-config.xml ile via a callback and the XML
Document Object Model (DOM) API.

Context parameters in web.xml particularly have the disad-
vantage of consisting of mere strings (usually long ones) that
have to be looked up and can be misspelled easily. It’s also
not directly possible to see what the defaults are for any given
coniguration item.

Both web.xml and the faces-config.xml ile that resides in
a .war ile’s WEB-INF folder have the shared disadvantage that
they cannot be read by CDI extensions and other artifacts that
start up early in the Java EE boot process.

Finally, XML-based iles (so-called deployment descriptors)
are not particularly lexible, speciically because there’s no
overall platform service in Java EE that allows placeholders in
them or a way to provide conditional included iles or overlays.

Because of the above issues, it’s planned to provide an
annotation-based and optionally programmatic high-level
coniguration system in JSF. In its most basic form, such con-
iguration looks as follows:

@FacesConfig

public class SomeClass {

}

This coniguration by itself will automatically add the JSF
servlet mappings, which is currently done when an empty
(but valid) faces-config.xml ile exists or when, for example,
the deprecated @ManagedBean annotation is encountered on
any class in the application.

As an alternative to the mentioned context parameters,
attributes on the @FacesConfig annotation can be used to
conigure various aspects of JSF:

@FacesConfig(

 stateSavingMethod = Server,

 faceletsRefreshPeriod = -1,

 projectStage = Production

)

public class SomeClass {

}

The intent here is to use strongly typed values where pos-
sible. For example, the Server value would come from an
enumeration.

Although it hasn’t been fully worked out yet, the pro-
grammatic aspect might be added using EL-enabled attri-
butes, much as in the validator example shown earlier,
for example:

@FacesConfig(

 stateSavingMethod = Server,

 faceletsRefreshPeriodExpr =

 "this.faceletsRefreshPeriod",

 projectStageExpr = "configBean.dev?

 'Development' : 'Production'"

)

public class SomeClass {

 int getFaceletsRefreshPeriod() {

 return … ? -1 : 0;

 }

}

In this example, the faceletsRefreshPeriod is set by an
expression that directly refers to a property of the bean on
which the annotation appears. Inside the getter method
of that property, arbitrary logic can be used to determine
the desired outcome. The projectStage, however, is set

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jdevelopment.nl/jsf-22/#533
http://jdevelopment.nl/jsf-22/#533

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

24

//enterprise java /

by an expression that performs some logic directly in EL
itself. Although the complexity of such EL expressions can
be fairly high, it’s good practice to keep them fairly small.
Note that referencing any bean other than "this" might not
be supported for those attributes that have to be read by
CDI extensions.

Conclusion

JSF 2.3 is moving forward by using existing services from the
Java EE platform and providing glue code where necessary to
bridge gaps. In addition to that main theme, an assortment of
features will be introduced that aim to keep JSF up to date and
generally easier to use. The features presented in this article
represent a work in progress and might still change before
the inal release of JSF 2.3. More details about the features
discussed here, as well as about other JSF 2.3 features, can be
found on my blog. </article>

Arjan Tijms is a member of the Expert Groups for JSF (JSR 372)

and the Java EE Security API (JSR 375). He is the cocreator of

the popular OmniFaces library for JSF that was a 2015 Duke’s

Choice Award winner, and he is the main creator of a suite of tests

for the Java EE authentication service provider interface (JASPIC)

that has been used by several Java EE vendors. [See the article

on JASPIC in this issue. —Ed.] Tijms holds a Master of Science

degree in computer science from the University of Leiden in

the Netherlands.

The author’s blog on JSF 2.3 updates

The oicial JSF 2.3 JSR

learn more

ATMs, Smartcards, POS Terminals, Blu-ray Players,

Set Top Boxes, Multifunction Printers, PCs, Servers,

Routers, Switches, Parking Meters, Smart Meters,

Lottery Systems, Airplane Systems, IoT Gateways,

Programmable Logic Controllers, Optical Sensors,

Wireless M2M Modules, Access Control Systems,

Medical Devices, Building Controls, Automobiles…

#1 Development Platform

13 Billion
Devices Run Java

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://arjan-tijms.omnifaces.org/p/jsf-23.html
http://arjan-tijms.omnifaces.org/p/jsf-23.html
https://jcp.org/en/jsr/detail?id=372
http://oracle.com/java

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

25

//enterprise java /

When you build web applications using Java EE, you often
need to work with some organization-speciic user

repository for authenticating users and obtaining a user’s
groups. Typically users are deined in a speciic database, a
strange LDAP coniguration, or some other user-identity store
speciic to the project. All Java EE application servers ship with
the capability to integrate with a common set of identity stores.
For example, GlassFish Server ships with several so-called
realms: ile, LDAP, JDBC, Oracle Solaris, PAM, and certiicate.

Each realm needs to be manually conigured, and the con-
iguration is speciic to the application server and outside the
control of your application. If the predeined realms don’t
it your needs, you then need to develop an application-
speciic module to extend the capabilities using applica-
tion server–speciic APIs. Many developers faced with this
prospect build some custom code in the web application,
which integrates with their required identity store and uses
application-speciic mechanisms to manage authentication
and authorization.

The problem with this approach is that these developer-
designed mechanisms for managing authentication are
not integrated with the application server, so the standard
Java EE security model does not apply, the power of Java EE
APIs such as isUserInRole and getUserPrincipal can’t be
used, and standard Java EE declarative security fails. In this

article, I examine an alternative solution that is tucked away
in Java EE. I expect readers to have a basic working knowledge
of Java EE and its authentication mechanisms.

Enter JASPIC

When developers design their own authentication modules,
the Java Authentication Service Provider Interface for Con-
tainers (JASPIC) provides an elegant solution. JASPIC has
been part of Java EE since Java EE 6, but it is not well known
and has a reputation for being diicult to use. The goal of the
JASPIC speciication is to deine, in a standard way, how the
authentication process occurs within a Java EE container and
the points within that process where custom authentication
modules for validating security messages, users, and groups
can be integrated.

If you just download the JASPIC speciication and dive right
in with the aim of building a compliant Server Authentication
Module (SAM), you will surely become confused and dispir-
ited. This is because the speciication is designed to describe
in depth what an implementer of a Java EE container has to
do. It also covers both client and server authentication and
a large number of security scenarios, most of which are not
relevant to you.

In this article, I cut through the confusion and demonstrate
that developing an authentication module that is well inte-

STEVE MILLIDGE

Custom Servlet Authentication
Using JASPIC
A little-known Java EE standard makes it simple to enforce authentication using
your preferred resources.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://docs.oracle.com/javaee/6/tutorial/doc/bnbxj.html#bnbxm
https://jcp.org/en/jsr/detail?id=196

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

26

//enterprise java /

grated with Java EE and comes packaged in your web applica-
tion is actually, barring some boilerplate code, pretty simple.
This is because in the case of custom servlet authentication,
JASPIC provides a small proile and deines the interaction
between your module and the servlet container—and this
interaction is fairly simple. In this article, I assume that you
are familiar with standard Java, Java Authentication and
Authorization Service (JAAS), and Java EE security concepts
such as principals, subjects, and callback handlers.

SAM Concept

JASPIC deines in its message processing model (MPM) how
authentication occurs in a container. The MPM deines the
speciic processing steps an inbound HTTP request into the
servlet container progresses through to be validated and
secured. At the heart of JASPIC is the concept of a SAM. A
SAM is called at speciic points in the processing of the serv-
let request, as shown in Figure 1.

As can be seen in Figure 1, the SAM’s validateRequest
method is called by the servlet container whenever there is
an inbound servlet request, prior to the request being passed
to the servlet for processing.

The SAM is also called after the servlet request is complete
to enable additional postprocessing of the servlet response

before it is returned to the client. The SAM is the key com-
ponent you need to implement to develop a custom authen-
tication provider for your web application. A SAM needs to
implement the JASPIC-deined interface ServerAuthModule.
Listing 1 shows the key method deinitions that need to
be implemented.

Listing 1.

public Class[] getSupportedMessageTypes();

public void initialize(

 MessagePolicy requestPolicy,

 MessagePolicy responsePolicy,

 CallbackHandler handler, Map options)

 throws AuthException;

public AuthStatus validateRequest(

 MessageInfo messageInfo,

 Subject clientSubject,

 Subject serviceSubject)

 throws AuthException;

 public AuthStatus secureResponse(

 MessageInfo messageInfo,

 Subject serviceSubject)

 throws AuthException;

 public void cleanSubject(

 MessageInfo messageInfo,

 Subject subject)

 throws AuthException;

I’ll examine each method in turn. The getSupportedMessage
Types method indicates to the container the types of mes-
sages your module supports. For the example, in the case
where you’re authenticating servlet calls, you must return Figure 1. JASPIC servlet MPM

Servlet

Servlet Container

secureResponse()

validateRequest()

SAM

HTTPRequest

Service()

HTTPResponse

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

27

//enterprise java /

HttpServletRequest and HttpServletResponse classes in your
implementation, as shown in Listing 2.

Listing 2.

public Class[] getSupportedMessageTypes() {

 return new Class[] {

 HttpServletRequest.class,

 HttpServletResponse.class};

}

The initialize method of your SAM should conigure the
SAM based on the properties passed in. The options map
could contain ServletContext initializer parameters, and
these could be used to initialize your SAM with the proper-
ties required to access a database, an LDAP server, or any
custom properties you need to set up your SAM. However, the
key thing to do in this method is to store a reference to the
passed-in CallbackHandler, because you will need it in your
validateRequest implementation to pass the user and group
principals to the servlet container. A simple implementation
of initialize looks like Listing 3.

Listing 3.

public void initialize(

 MessagePolicy requestPolicy,

 MessagePolicy responsePolicy,

 CallbackHandler handler,

 Map options)

 throws AuthException {

 this.handler = handler;

}

The secureResponse method is called after the servlet request
has been processed. In the case of a simple SAM for use
with servlets, this method doesn’t really need to contain
any speciic processing. If you need to do any postprocess-

ing of the servlet response at this point you can, but a simple
implementation would be just to return success, as shown
in Listing 4.

Listing 4.

public AuthStatus secureResponse(

 MessageInfo messageInfo,

 Subject serviceSubject)

 throws AuthException {

 return SEND_SUCCESS;

}

Another method that is not really needed for developing a
servlet authenticator but is part of the interface of the SAM is
cleanSubject. This method can be implemented as a no-op,
as shown in Listing 5.

Listing 5.

public void cleanSubject(

 MessageInfo messageInfo,

 Subject subject)

 throws AuthException {

}

Implementing validateRequest()

As you can see from the previous listings, the majority of
the methods you need to implement for your SAM can be
fairly straightforward. The inal method to be implemented,
validateRequest, is the heart of your authentication provider.
The implementation of this method needs to perform several
key tasks.

■■ Retrieve the servlet request and servlet response from the
MessageInfo object and retrieve whatever information you
need to use to authenticate a user.

■■ Connect to your identity store and authenticate the user and
retrieve the groups associated with the user.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

28

//enterprise java /

■■ Use the stored callback handler to pass these user and
group principals to the servlet container.

■■ Finally, return success to the servlet container to allow the
request to proceed to the servlet.

In Listing 6, which shows the body of my validateRequest
method, I retrieve the username and the user’s groups
directly from the servlet request parameters and use these
to set up the user and group principals. Obviously this is
not very secure, but it illustrates the skeleton of what needs
to be done.

Listing 6.

HttpServletRequest request =

 (HttpServletRequest)

 messageInfo.getRequestMessage();

String user = request.getParameter("user");

 String groups[] =

 request.getParameterValues("group");

Callback callbackArray [] = null;

if (user != null && groups != null) {

 // callback used to set the user Principal

 Callback userCallback =

 new CallerPrincipalCallback(

 clientSubject, user);

 Callback groupsCallback =

 new GroupPrincipalCallback(

 clientSubject,groups);

 callbackArray = new Callback[] {

 userCallback,

 groupsCallback};

}

else {

 callbackArray = new Callback[] {

 new CallerPrincipalCallback(

 clientSubject,

 (Principal)null)

 };

}

try {

 handler.handle(callbackArray);

} catch (Exception ex) {

 AuthException ae =

 new AuthException(ex.getMessage());

 ae.initCause(ex);

}

return SUCCESS;

Some key points to note about this implementation are
that if you decide that the authentication is successful, the
resulting Principals need to be passed to the container. To
pass Principals to the servlet container, you need to create
instances of speciic callbacks that are deined by JASPIC.
The irst is a CallerPrincipalCallback, which should be
initialized with the clientSubject passed into your validate
RequestMethod and a String representing your username or a
custom Principal object.

The second callback is a GroupPrincipalCallback, which
also should be initialized with the clientSubject and with
an array of Strings representing the names of the groups the
user belongs to or an array of custom Principals. These call-
back handlers are then passed to the handle method of the
handler you stored in your initialize method earlier so that
the servlet container can initialize the Java EE caller principal
and set up the Java EE roles.

If the authentication is not successful, you need to create a
CallerPrincipalCallback initialized with the clientSubject
and a null Principal, and then pass these to the handler. This
has the efect of letting the request proceed but with no user
associated. Authorization security checks in the container
will then deny access.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

29

//enterprise java /

Therefore, you always return SUCCESS from your validate
Request method. FAILURE should be used as a return value
only if there was some problem with your SAM—for example,
if you were unable to contact some external resource such as
an LDAP server.

Registering Your SAM

To deploy your custom SAM with your application, you pack-
age the implementation classes into the WAR ile, as you
would for any other application classes. The JASPIC specii-
cation deines how to register and unregister a custom SAM;
this can be done in a WebListener, which is called when your
web application starts. Listing 7 shows how to register and
unregister the SAM in a WebListener.

Listing 7.

@WebListener

public class SimpleSAMWebListener implements

 ServletContextListener {

 private String registrationid;

 public void contextInitialized(

 ServletContextEvent sce) {

 String appContext =

 registrationid =

 AuthConfigFactory.getFactory()

 .registerConfigProvider(

 new SimpleSAMAuthConfigProvider(

 null,null),

 "HttpServlet",

 appContext,

 "Simple SAM");

 }

 public void contextDestroyed(

 ServletContextEvent sce) {

 AuthConfigFactory

 .getFactory()

 .removeRegistration(

 registrationid);

 }

}

There are some additional boilerplate classes required to inte-
grate your SAM into the JASPIC infrastructure. These classes
are implementations of three interfaces, and they are rarely
diferent than the versions in the zip ile available in the Java

Magazine download area. Typically, if you’re using a single
SAM, you’ll use the following iles without modiication:

■■ AuthConfigProvider is a factory for creating ServerAuth
Config objects.

■■ ServerAuthConfig is an object that describes a conigu-
ration for a speciic application context and message
layer—which, in the case of my servlet application, is
always the same. ServerAuthConfig is also a factory for
ServerAuthContext objects.

■■ ServerAuthContext is a class that wraps the SAM, because
in the general case there can be multiple SAMs, but in most
cases—and in my example—there is only one. If there are
multiple SAMs, the ServerAuthContext implementation
should call each in turn and then adjudicate the results.

The implementation included in this article will work as
expected unless there are more-complex initialization and
coniguration requirements or there are multiple SAMs that
need to be invoked.

Testing the Example SAM

In my example SAM, I implemented validateRequest so
that the user and groups were obtained from the servlet
request parameters.

To test the SAM, I need to deine a servlet with a security
constraint, as shown in Listing 8.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://goo.gl/43Y7KZ

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

30

//enterprise java /

Listing 8.

@WebServlet(name = "SecureServlet",

 urlPatterns = {"/SecureServlet"})

@DeclareRoles("admin")

@ServletSecurity(@HttpConstraint(

 rolesAllowed = "admin"))

public class SecureServlet extends HttpServlet {

 ...

For this example, I implemented the servlet so that it just
prints the caller principal:

out.println("User Principal is " +

 request.getUserPrincipal().getName());

If I access the servlet directly without any request parame-
ters, I receive the “forbidden access” response from the con-
tainer, because my SAM cannot ind the user or groups (see
Figure 2).

If I use the URL—including a user and group admin, as in
http://127.0.0.1:8080//jaspic-sam-example/Secure

Servlet?user=steve&group=admin—I get the authenticated
response from the servlet (see Figure 3) because the SAM sets

up the admin role and the caller principal from the servlet
request parameters.

For this to work in your application server, you will need to
conigure role mapping in your web application for the logi-
cal role admin that is declared on your servlet to be mapped
to a server group admin. This is typically done in the appli-
cation server–speciic deployment descriptor. In the case of
GlassFish, the server can be conigured to map roles auto-
matically to the group with the same name.

Conclusion

I encourage you to use JASPIC to build your own custom web
application authentication modules. It is not too diicult once
you get started and you realize that the core of the imple-
mentation is purely in your validateRequest method of your
custom SAM. The additional support classes can be used
directly from my example project to support your SAM and
are suicient for the majority of cases. Once you have built a
SAM, you can take full advantage of the power of the stan-
dard Java EE declarative security mechanisms for securing
your application. </article>

Steve Millidge (@l33tj4v4) is the founder and director of Payara

Services and C2B2 Consulting. He has used Java extensively

since version 1.0 and is a member of the Expert Groups for

JSR 107 (Java caching), JSR 286 (portlets), and JSR 347 (data

grids). He founded the London Java EE User Group and is an ardent

Java EE advocate. Millidge has spoken at several conferences.

Figure 3. Successful test result showing user data

Figure 2. Testing error message

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

31

//enterprise java /

JavaScript Object Notation (JSON) enables lightweight
data interchange. It is often used in lieu of XML, but

clearly both options have their beneits and drawbacks.
XML is powerful, but its power comes at the price of com-
plexity. On the other hand, JSON is somewhat more limited
than XML but this leads to one of the main beneits of JSON:
its simplicity. This simplicity probably explains why today,
JSON is unarguably the most common data interchange
format on the internet. JSON is often associated with REST
services, but traditional enterprise applications are more
and more using JSON, too, so the introduction of JSON in the
latest version of Java EE—Java EE 7—was a welcome addition
to the platform.

JSON support is delivered through the new Java API for JSON
Processing (JSON-P), which was standardized in JSR 353. This
speciication deines a simple API to process—that is, parse,
generate, transform, and query—JSON documents. Note that
binding (that is, marshaling of Java objects to JSON docu-
ments and vice versa) will be addressed in a related API, the
Java API for JSON Binding (JSON-B), which is currently being
deined in JSR 367.

JSON-P ofers not one but two APIs: a high-level object
model API that is similar to the XML Document Object Model
(DOM) API and a lower-level streaming API that is similar
to the Streaming API for XML (StAX). This article provides a
brief introduction to both these APIs.

The JSON-P Object Model API

The JSON-P object model API is based on an in-memory, tree-
like structure that represents the JSON data structure in a way
that can be queried easily. The API also enables navigation
through this JSON tree structure. Note that this API delivers
ease of use, but it consumes more memory and is not as ei-
cient as the lower-level streaming API, which I discuss later
in this article.

The object model API supports the diferent JSON data types
via the following classes: JsonObject, JsonArray, JsonString,
and JsonNumber. In addition, the class JsonValue deines a few
constants to represent speciic JSON values (true, false, and
null). JsonValue is also the common supertype of JsonObject,
JsonArray, JsonString, and JsonNumber.

The object model API resides in the javax.json package
and works with two principal interfaces: JsonObject and
JsonArray. JsonObject provides a Map view for accessing the
unordered collection of zero or more key-value pairs repre-
senting the model. JsonArray provides a List view for access-
ing the ordered sequence of zero or more values of the model.
Using the JsonReader.readObject method, you can create
instances of either type from an input source. You can also
build JsonObject and JsonArray instances using a luent API,
as I explain next.

To create a model that represents a JSON object or a JSON
array, the object model API relies on a simple builder pattern.

DAVID DELABASSÉE

Using the Java APIs for
JSON Processing
Two easy-to-use APIs greatly simplify handling JSON data.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

32

//enterprise java /

You just need to use static methods
from the Json class (Json.create
ObjectBuilder or Json.create
ArrayBuilder method) to get a builder
object. You then chain multiple add
method invocations on the builder
object to add the necessary key-value
pairs. Finally, the build method is
invoked to actually return the gener-
ated JSON object or JSON array.

JSON-P 1.0 can be used from
Java EE 7 (just use any Java EE 7–compatible application
server) or from Java SE. To do that in Maven, just make sure
you add the following two dependencies in your project object
model (POM) ile.

<dependency>

 <groupId>javax.json</groupId>

 <artifactId>javax.json-api</artifactId>

 <version>1.0</version>

</dependency>

<dependency>

 <groupId>org.glassfish</groupId>

 <artifactId>javax.json</artifactId>

 <version>1.0.4</version>

</dependency>

The irst javax.json-api dependency is needed to compile
to code. The second dependency is referencing the JSON-P
reference implementation, which is necessary to run JSON-P
compiled code.

The following example illustrates how to create a JSON
representation of a country using the JSON-P object model’s
builder API. This example also shows how to handle a very
common use case, nesting JSON objects.

// 1) get a JSON object builder

JsonObject country = Json.createObjectBuilder()

// 2) add the different key/values pairs

 .add("country", "Belgium")

 . . .

 .add("population", 11200000)

 // note that JSON objects can be nested

 .add("officialLanguages", Json.createArrayBuilder()

 .add(Json.createObjectBuilder()

 .add("language", "Flemish"))

 .add(Json.createObjectBuilder()

 .add("language", "French"))

 .add(Json.createObjectBuilder()

 .add("language", "German")))

// 3) return the generated JSON object

 .build();

[For the sake of brevity and clarity, the code snippets omit
unrelated but important aspects such as proper error
handling, imports, proper resources management, and
so forth. —Ed.]

The JSON-P object model API provides a variety of get-
ter methods for performing queries on JSON objects (or JSON
arrays). Note that the API is immutable and thread-safe. This
explains why the API provides only getter methods and no
setter methods.

The irst parameter passed to a getter is the key of the
key-value pair to look up. Optionally, you can pass a second
parameter to specify a default value in case that key cannot
be found.

// looking up the country name value

String capital =

 country.getString("country ", "Unknown!");

The JSON-P
object model
API provides
only getter
methods and no
setter methods.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

33

//enterprise java /

Here is an example that uses JsonReader to create a JSON
object from a ile, multiple JSON-P getters to query it, and the
Java 8 Stream API to join the results.

JsonReader jsonReader =

 Json.createReader(new FileReader("data.json"));

JsonObject country = jsonReader.readObject();

System.out.println("Country: " +

 country.getString("country", "empty!"));

int population = country.getInt("population", 0);

if (population > 0)

 System.out.println("Population: " + population);

JsonArray langs =

 country.getJsonArray("officialLanguages");

String offLangs =

 langs.getValuesAs(JsonObject.class)

 .stream()

 .map(lang -> lang.getString("language",""))

 .collect(Collectors.joining(", "));

 System.out.println(

 "Official languages: " + offLangs);

Using the sample JSON data, this code will produce the
following output:

Country: Belgium

Population: 11200000

Official languages: Flemish, French, German

Using the object model API, you can also navigate through
the in-memory object tree. The navigation is based on the

common supertype JsonValue and is illustrated in the fol-
lowing example. This example shows a simple recursive
method, navigate, that navigates through the tree structure
to display each of its elements. For each tree element, this
method invokes the getValueType method to get the actual
type of the element (for example, a JSON string) so it can
then act accordingly (such as invoking the appropriate getter
getString method).

public static void navigate (

 JsonValue tree, String key) {

 if (key != null)

 System.out.print(key + ": ");

 switch(tree.getValueType()) {

 case OBJECT:

 JsonObject object = (JsonObject) tree;

 for (String name : object.keySet())

 navigate (object.get(name), name);

 break;

 case ARRAY:

 System.out.println(" (JSON array)");

 JsonArray array = (JsonArray) tree;

 for (JsonValue val : array)

 navigate (val, null);

 break;

 case STRING:

 JsonString str = (JsonString) tree;

 System.out.println(str.getString());

 break;

 default:

 // for brevity, let's ignore NUMBER,

 // BOOLEAN and NULL

 break;

 }

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

34

//enterprise java /

To use this example, just invoke the method and pass it a
JSON object:

navigate (country, null);

The object model API also permits, via the JsonWriter class,
outputting a JSON object (or array) to a stream. You irst use
the Json.createWriter method to specify the output stream
to use. The JsonWriter.writeObject method then writes the
JSON object to that stream. Finally, you need to close the
output stream either by calling the JsonWriter.close method
or via the AutoCloseable “try-with-resources” approach, as
illustrated in the example below.

StringWriter strWriter = new StringWriter();

try (JsonWriter jsonWriter =

 Json.createWriter(strWriter)) {

 jsonWriter.writeObject(country);

}

The JSON-P Streaming API

The second JSON-P API is a lower-level streaming API that
is conceptually similar to StAX. This streaming API provides
forward-only, read-only access to JSON data in a streaming
way. It is particularly well suited for reading, in an eicient
manner, large JSON payloads. The streaming API also allows
you to write JSON data to output in a streaming fashion.

This API resides in the javax.json.stream package. The
JsonParser interface is at the core of this streaming API. It
provides forward-only, read-only access to JSON data using
a pull-parsing programming model. In this pull model,
the application controls the parser by repeatedly calling
JsonParser methods to advance the parser. Based on that, the
parser state will change, and parser events will be generated
to relect this.

The pull parser can gen-
erate any of the following
self-explanatory events:
START_OBJECT, END_OBJECT,
START_ARRAY, END_ARRAY,
KEY_NAME, VALUE_STRING,
VALUE_NUMBER, VALUE_
TRUE, VALUE_FALSE, and
VALUE_NULL. The application
logic should leverage these
diferent events to advance
the parser to the necessary position within the JSON docu-
ment to obtain the required data.

First, create a pull parser using the Json.createParser
method from either an InputStream or a Reader. The applica-
tion will then keep advancing the parser forward by calling
the hasNext method (Has the parser reached the end yet?) and
next method on the parser. Keep in mind that the parser can
be moved in only one direction: forward.

The following example uses a free online service that
exposes country-related information in JSON. The code is
simply creating a streaming parser from an inputStream
using the Json.createParser method. The application then
keeps advancing the parser to go over each country. In this
case, the parsing logic is looking at only two keys: name and
capital. For each country, the application looks at the "name"
value; if it is not "France", the application keeps advanc-
ing the parser. Once "France" is found, the application
looks only at the "capital" key. Because the current parser
state is Event.KEY_NAME (that is, the parser is on France’s
capital key), the application advances the parser one step
(Event.VALUE_STRING) and gets the actual value of the capital
using the getString method on the parser. Once this is done,
it is useless to continue parsing the rest of the JSON stream,
so the application exits the loop.

JSON-P obviously is not
the first Java-based
JSON-related API, but it
is the first one that has been
standardized through the
Java Community Process.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

35

//enterprise java /

//1. Create a streaming parser from an InputStream

URL url = new URL("http://restcountries.eu/rest/v1/all");

try (InputStream is = url.openStream();

 JsonParser parser = Json.createParser(is)) {

 boolean foundCapital = false;

 boolean foundCountry = false;

//2. Keep advancing the parser

//until it finds the 'France' capital

 while (parser.hasNext() && !foundCapital) {

 Event e = parser.next();

 if (e == Event.KEY_NAME) {

 switch (parser.getString()) {

 // is the parser on a pair

 // whose key is 'name' and

 // value is 'France'?

 case "name":

 parser.next();

 String country = parser.getString();

 if (country.equals("France")) {

 foundCountry = true;

 }

 break;

 case "capital":

 if (foundCountry) {

 // parser is on the 'France' key/value

 // just advance the parser one step

 parser.next();

 // and get the actual value!

 String capital = parser.getString();

 // no need to parse the rest of doc

 foundCapital = true;

 }

 break;

 }

 }

 }

}

This example has very simple parsing logic. And depending
on the parsing logic requirements, this streaming approach
might require you to do a bit more work, but it is clearly more
eicient than the higher-level object model–based approach.

Similarly, you can also generate a JSON document in a
streaming fashion as illustrated in the example below.

FileWriter writer = new FileWriter("canada.json");

JsonGenerator gen = Json.createGenerator(writer);

gen.writeStartObject()

 .write("country", "Canada")

 .write("capital", "Ottawa")

 .write("poulation", 36048521)

 .writeStartArray("officialLanguages")

 .writeStartObject()

 .write("language", "English")

 .writeEnd()

 .writeStartObject()

 .write("language", "French")

 .writeEnd()

 .writeEnd()

 .writeEnd();

gen.close();

A JsonGenerator is used to write JSON to a byte stream (or
to a Writer). To obtain a generator, call one of the javax

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

36

//enterprise java /

.json.Json.createGenerator static methods. Once you
have a JsonGenerator instance, you can invoke the diferent
writeStartObject, writeArrayObject, and write methods to
construct the representation of the desired JSON object.
When you call the writeStartObject and writeArrayObject
methods, it is important to call the corresponding closing
method, writeEnd. Finally, you need to invoke the close
method on the generator to properly close resources.

Conclusion

JSON-P provides a simple object model API to parse, gener-
ate, and query JSON documents. It also ofers an eicient,
lower-level API to parse and generate large JSON payloads in a
streaming way.

JSON-P is obviously not the irst Java-based JSON-related
API, but it is the irst one that has been standardized through
the Java Community Process. And given that JSON-P is now
part of Java EE, you can be sure that this API will be available
regardless of the Java EE 7 application server you are using. In
addition, JSON-P has no dependency on Java EE, so it can also
be used in regular Java SE applications. </article>

David Delabassée (@delabassee) is a Java veteran and also a

regular speaker on the Java conferences circuit. He is currently

working at Oracle, where he focuses on server-side Java.

“Introducing JSON”

JSON object model Javadoc

JSON Stream API Javadoc

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.json.org
https://javaee-spec.java.net/nonav/javadocs/javax/json/package-summary.html
https://javaee-spec.java.net/nonav/javadocs/javax/json/stream/package-summary.html
http://oracle.com/java

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

37

//from the vault /

In this article, I explain how to build a simple web application
that uses the core JavaMail API to send email. The applica-

tion includes three web pages: a front page, a “sent e-mail”
conirmation page, and a “failed e-mail” notiication page.

The front page of the web application (see Figure 1) contains
the following web components: input ields for the email
address of the sender and recipient, ields for the subject
and body, and several ields related to the SMTP server (IP
address, username, password, and port number). It also con-
tains the crucial “send” button.

The conirmation page (see Figure 2) and the similar noti-
ication page for a successful send need only a button that
redirects the user back to the front page.

The JavaMail API

The JavaMail API is a package that provides general email
facilities, such as reading, composing, and sending electronic
messages. JavaMail, which is a platform-independent and
protocol-independent framework, is included in Java EE.

As shown in Figure 3, JavaMail has an application-level
interface used by the application components to send and
receive email. There is also a service provider (SP) inter-
face that speaks protocol-speciic languages. For instance,
SMTP is used to send emails. Post Oice Protocol 3 (POP3) is
the standard for receiving emails. Internet Message Access
Protocol (IMAP) is an alternative to POP3.

In addition, the JavaMail API contains the JavaBeans
Activation Framework (JAF) to handle email content that is

not plain text, including Multipurpose Internet Mail Exten-
sions (MIME), URLs, and ile attachments.

Required Software

For the purposes of this tutorial, I used the following soft-
ware: Microsoft Windows (I used Windows 7), the JDK for Java
EE 6 or higher, an IDE (I used NetBeans 7), and a web server

T. LAMINE BA

Using JavaMail in Java EE
Create a web application that can send emails.

Figure 2. The confirmation page

Figure 1. The main page of the email app

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

38

//from the vault /

such as GlassFish or Apache Tomcat.

Methodology

The tutorial uses JavaServer Faces (JSF) technology to build
the web application. Accordingly, the following worklow
is proposed:

1. Create a backing bean.
2. Create web pages using component tags.
3. Map the FacesServlet instance.

Step 1: Create a Backing Bean

A backing bean is a type of managed bean speciic to the
JSF technology. It holds the logic of the web application and
interacts with the web components contained in the web
pages. The backing bean can contain private attributes that
correspond to each web component, getter and setter meth-
ods referring to the attributes, and methods to handle the
following four tasks:

■■ Perform processing associated with navigation from one
web page to another.

■■ Handle action events.

■■ Perform validation on a component’s value.
■■ Handle value-change events.

Accordingly, in a backing bean called emailJSFManagedBean,
we create the getter and setter methods necessary for each
of the eight web components listed at the beginning of this
article. If the recipient’s email address is a variable of type
String called to, Listing 1 shows how the getter and setter
methods would be deined.

Listing 1.

package useJavaMail;

/*** Import all necessary libraries ***/

@ManagedBean

@RequestScoped

public class emailJSFManagedBean {

 private String to;

/** Create a new instance of emailJSFManagedBean */

 public emailJSFManagedBean() {

 to = null;

 }

 public String getTo() {

 return to;

 }

 public void setTo(String to) {

 this.to = to;

 }

}

In this code, @ManagedBean is a declaration that registers the
backing bean as a resource with the JSF implementation. In
addition, @RequestScoped is the annotation that identiies the
managed bean as a resource that exists only in the scope of
the request. In other words, the bean exists for the duration

Figure 3. Design of the JavaMail API

SMTP
Server

JavaMail API JAF

Java Application

IMAP
mail store

POP3
mail store

SMTP
SP

IMAP
SP

POP3
SP

JavaMail

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

39

//from the vault /

of a single HTTP request for the user’s interaction with the
web application.

We also create two speciic methods within the backing bean.
The irst method’s function is to validate all emails submit-

ted by the user in the web application (see Listing 2).

Listing 2.

public void validateEmail(FacesContext context,

 UIComponent toValidate, Object value) {

 String message = "";

 String email = (String) value;

 if(email == null || email.equals("")) {

 ((UIInput)toValidate).setValid(false);

 message = "E-mail address is required";

 context.addMessage(

 toValidate.getClientId(context),

 new FacesMessage(message));

 }

 else if (!(email.contains("@") &&

 email.contains("."))) {

 ((UIInput)toValidate).setValid(false);

 message = "E-mail address is invalid";

 context.addMessage(

 toValidate.getClientId(context),

 new FacesMessage(message));

 }

 }

Note that the validation email method takes three
arguments:

■■ The context of the JSF implementation, in order to pass
error messages from the managed bean to the user
interface.

■■ The identiier UIComponent toValidate of the web compo-
nent that is invoking the method, which, in this case, is a
text input ield (see Listing 1) method, takes user input as an
argument, as illustrated in Figure 1.

■■ The variable value, which contains the email address that
needs to be validated.

Accordingly, the code shown in Listing 2 accomplishes the fol-
lowing tasks:

■■ It gets the local value of the web component.
■■ It checks whether the value is null or empty.
■■ If the value is null or empty, the method sets the compo-

nent’s valid property to false and sets the error message
to E-mail address is required.

■■ Otherwise, the method checks whether the @ character and
the period (.) character are contained in the value.

■■ If they aren’t, the method sets the component’s valid
property to false and sets the error message to E-mail
address is invalid.

Then, the error message is sent to the FacesContext instance,
which associates it with the invoking web component.

The second method handles the logic for sending an email
with JavaMail. This navigation handling method is trig-
gered by the action of clicking the SEND E-MAIL button (see
Listing 3).

Listing 3.

public String submitEmail() {

// create e-mail and send

 /*** Initialize variables ***/

 props = new Properties();

 // fill props w/ session and message data

 session = Session.getDefaultInstance(

 props, null);

 message = new MimeMessage(session);

 try {

 message.setContent(this.getDescr(),

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

40

//from the vault /

 "text/plain");

 message.setSubject(this.getSubject());

 fromAddress =

 new InternetAddress(this.getFrom());

 message.setFrom(fromAddress);

 toAddress =

 new InternetAddress(this.getTo());

 message.setRecipient(RecipientType.TO,

 toAddress);

 // Transport message

 message.saveChanges(); //send implies save

 Transport transport =

 session.getTransport("smtp");

 transport.connect(this.smtp, this.port,

 this.username,

 this.password);

 if(transport.isConnected() == false)

 return "b_response";

 transport.sendMessage(

 message, message.getAllRecipients());

 transport.close();

 }

 catch (MessagingException me) {

 // handle catch

 return "b_response";

 }

 return "g_response";

 }

This type of method is known as an action method. It is
a public method that takes no argument and returns a
string that corresponds to the page that the web applica-
tion will navigate to. In this case, the method produces and
sends an email. If the email transmission is successful, the

method returns g_response (for “good response”), which
displays the page g_response.xhtml in the browser (see
Figure 2). If the email transmission fails, b_response (for “bad
response”) is returned and the browser displays the page
b_response.xhtml.

To send an email using JavaMail, we irst initiate an
email session instance with the Session class. The email
session is the starting point for JavaMail. It uses the
java.util.Properties class to get information, such as the
email server, the username, and the password, which can
be shared across the rest of the application. In this case, we
create a default instance of the Session class:

session =

 Session.getDefaultInstance(props, null);

Second, through the session, we produce the email using
the Message class. However, considering that Message is an
abstract class, we choose instead its subclass MimeMessage,
which allows us to create messages that understand MIME
types and headers, as deined in the diferent standards-
deining RFCs. The message is constructed with the session
as an argument:

MimeMessage message =

 new MimeMessage(session)

Then, we send the email by manipulating an object of type
Transport. The message is sent via the transport protocol
SMTP. The transmission is handled by the Transport class
and an object is instantiated as follows:

Transport transport =

 session.getTransport("smtp");

Then, the transport object attempts to connect to the SMTP

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

41

//from the vault /

server using the suggested credentials (the SMTP server
address, the port number that accepts SMTP connections,
the username, and the password) to pass authentication on
the server.

transport.connect(this.smtp,

 this.port, this.username,

 this.password);

If the connection is accepted by the SMTP server, the email is
sent via the send command.

Finally, we close the transportation service by invoking the
close command:

transport. sendMessage(message,

 message.getAllRecipients());

 transport.close();

Note that the ile containing the backing bean should be
under the Sources Packages directory of the web application.

Step 2: Create Web Pages Using Component Tags

The diferent web pages of the application take advantage of
the Facelets declaration language to produce tags for various
web components.
Create the front page. On this page (Figure 1), there are four
types of tags associated with the web components: inputText,
inputSecret, inputTextArea, and commandButton. The
inputText is equivalent to an input tag of type text in HTML.
In other words, it is a ield that takes user input. We use this
type of tag to obtain the sender’s address, the recipient’s
address, the subject of the email, the SMTP server address,
the SMTP server username, and the port number of the
SMTP server.

The inputSecret is equivalent to the input tag of type
password in HTML. It is also a ield that takes user input.

However, contrary to the inputText tag, the inputSecret does
not display the value entered by the user. This tag is used to
record the SMTP server password.

The inputTextArea is equivalent to the textarea tag in
HTML. It is used to record the body of the email we intend
to send.

User input is validated by the application either by using
the standard validators or by invoking a validating method
implemented in the backing bean (see Listing 2).

For example, using Facelets, we invoke the validating
method emailJSFManagedBean.validateEmail for the FROM
address ield using the code shown in Listing 4.

Listing 4.

<h:form>

 <table>

 <tr>

 <th style="width:100px"

 align="right">FROM:</th>

 <td>

 <h:inputText id="from" size="100"

 validator=

 "#{emailJSFManagedBean.validateEmail}"

 value="#{emailJSFManagedBean.from}" />

 <h:message style="color:red" for="from"/>

 </td>

 </tr>

 </table>

</form>

Note that the purpose of the message tag (<h:message/>) is to
display the error message if the email address validation fails.

As another example, Listing 5 shows how we use standard
validators in Facelets for the SUBJECT ield.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

42

//from the vault /

Listing 5.

<h:form>

 <table>

 <tr>

 <th style="width:100px" align="right">FROM:</th>

 <td>

 <h:inputText id="subject" size="100"

 validatorMessage="Subject is required"

 value="#{emailJSFManagedBean.subject}">

 <f:validateRequired for="subject"/>

 </h:inputText>

 <h:message style="color:red" for="from"/>

 </td>

 </tr>

 </table>

</form>

The validateRequired tag (<f:validateRequired/>) is applied
to the inputText with an id of subject. This invalidates the
form when it is submitted and the SUBJECT ield is empty. In
this case, an error message is displayed where the message
tag (<h:message/>) is located.
Create the confirmation page and the error notification page. The
conirmation page (g_response.xhtml) is called when an email
has been sent (see Figure 2). On the other hand, the error notii-
cation page (b_response.xhtml) is called when the email trans-
mission fails. Both pages contain, respectively, only one web
component, which is a Facelets commandButton tag:

<h:form>

 <h:commandButton id="back"

 value="Back" action="index">

</h:form>

The code creates a button that, when clicked, moves the user
to the front page (index.xhtml).

Step 3: Map the FacesServlet Instance

The inal step consists of mapping the FacesServlet instance
by altering the web deployment descriptor, that is, the web
.xml ile. Listing 6 is a typical example.

Listing 6.

<servlet>

 <servlet-name>Faces Servlet</servlet-name>

 <servlet-class>

 javax.faces.webapp.FacesServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>Faces Servlet</servlet-name>

 <url-pattern>/faces/*</url-pattern>

</servlet-mapping>

Note, however, that the mapping is done automatically if you
are using an IDE such as NetBeans.

These examples have demonstrated how to use only the
basic functionality of the JavaMail API. The library, however,
is much more extensive and covers almost all the needs of a
mail agent. While JavaMail was designed for use with Java EE,
it can be used with Java SE, which can make for fun projects.

[This article, like others in the //from the vault / series, is an
updated version of an article that appeared in an earlier issue
of Java Magazine. This article irst appeared in the March/
April 2012 issue. —Ed.] </article>

T. Lamine Ba is the president of Real Basis and cofounder of the

West African Java user group SeneJUG and is one of the early

members of JUG-Africa.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

43

//java 9 /

JShell, a new read-evaluate-print loop (REPL), will be
introduced in JDK 9. Motivated by Project Kulla (JEP 222),

JShell is intended to provide developers an API and an interac-
tive tool that evaluates declarations, statements, and expres-
sions of the Java programming language.

In this article, I present a brief overview of JShell, explain
its use, and demonstrate its beneits for developers.

Overview

JShell is a new tool in JDK 9 that ofers a basic shell for Java that
uses a command-line interface. It is also the irst oicial REPL
implementation for the Java platform, although this concept
has existed in many languages (for example, Groovy and Lisp)
and in third-party tools (such as Java REPL and BeanShell).

JShell acts like a UNIX shell: it reads the instructions, eval-
uates them, prints the result of the instructions, and then
displays a prompt while waiting for new commands. It is built
around several core concepts—snippets, state, wrapping,
instruction modiication, forward references, and snippet
dependencies—that I explain.

A snippet corresponds to an instruction that is based on
Java Language Speciication (JLS) syntax. It represents a
single expression, statement, or declaration. What follows is
a simple snippet. When you enter the snippet into JShell, the
line below is displayed by the REPL:

System.out.println("My JShell snippet");

My JShell snippet

In my examples in this article, the characters in blue indicate
text entered at the command line into JShell, and the result-
ing output is shown in black monospace font.

Like Java code, JShell allows you to declare variables, meth-
ods, and classes:

int x, y , sum

| Added variable x of type int

| Added variable y of type int

| Added variable sum of type int

x = 10 ; y = 20 ; sum = x + y;

| Variable x has been assigned the value 10

| Variable y has been assigned the value 20

Variable sum has been assigned the value 30

System.out.println("Sum of " + x + " and " + y +

 " = " + sum);

Sum of 10 and 20 = 30

And now, here’s an example of a valid class, which I use
later:

CONSTANTIN DRABO

JShell: Read-Evaluate-Print Loop
for the Java Platform
Testing code snippets will be part of the JDK.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

44

//java 9 /

class Student {

private String name ;

private String classRoom ;

private double grade ;

public Student() {

}

public String getName() {

return name ;

}

public void setName(String name) {

this.name = name ;

}

public String getClassRoom() {

return classRoom ;

}

public void setClassRoom(String classRoom) {

this.classRoom = classRoom ;

}

public double getGrade() {

return grade ;

}

public void setGrade(double grade) {

this.grade = grade ;

}

}

| Added class Student

The indentation, of course, looks diferent than in Java,
because this code was typed at the JShell command line.

Note that some normal Java statements are not allowed at
this initial declaration. The only permitted class modiier is
abstract. Packages are not allowed. Even public won’t work:

public class University {

Student student = new Student();

}

| Warning:

| Modifier 'public' not permitted in top-level

 declarations, ignored

| public class University {

| ^----^

| Added class University

State. Each statement in JShell has a state. The state deines
the execution status of snippets and of variables. It is deter-
mined by results of the eval() method of the JShell instance,
which evaluates code. There are seven status states:

■■ DROPPED: The snippet is inactive.
■■ NONEXISTENT: The snippet is inactive because it does not

yet exist.
■■ OVERWRITTEN: The snippet is inactive because it has been

replaced by a new snippet.
■■ RECOVERABLE_DEFINED: The snippet is a declaration

snippet with potentially recoverable unresolved references
or other issues in its body.

■■ RECOVERABLE_NOT_DEFINED: The snippet is a declara-
tion snippet with potentially recoverable unresolved refer-
ences or other issues. (I discuss the diference between this
and the previous state shortly.)

■■ REJECTED: The snippet is inactive because it failed com-
pilation upon initial evaluation and it is not capable of
becoming valid with further changes to the JShell state.

■■ VALID: The snippet is valid.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

45

//java 9 /

When a snippet is not declared, it is considered inactive
and not part of the state of the JShell instance nor is it vis-
ible to the compilation of other snippets. At this stage, it is a
NONEXISTENT snippet.

If the snippet is submitted to the eval() method and
there are no errors, it becomes part of the state of the JShell
instance and the status is VALID. Querying JShell gives
isDefined == true and isActive == true.

In the case where the signature of the snippet is valid but
the body contains issues or unresolved references, the
status is RECOVERABLE_DEFINED and a JShell query states
isDefined == true and isActive == true.

If the signature of the snippet is wrong and the body also
contains issues or unresolved references, the snippet’s
status is RECOVERABLE_NOT_DEFINED and the status is
isDefined == false even though the snippet stays active
(isActive == true).

A snippet becomes REJECTED when compilation fails, and it
is no longer a valid snippet. This is a inal status and will not
change again. At this stage, both isDefined and isActive are
set to false.

You can also deactivate and remove a snippet from the
JShell state with an explicit call to the JShell.drop(jdk
.jshell.PersistentSnippet) method. At that point, the snip-
pet status changes to DROPPED. This is also a inal status and
will not change in the future.

Sometimes a snippet type declaration matches another
one. In this case, the previous snippet is inactive and it is
replaced by the new one. The status of the old snippet
becomes OVERWRITTEN and the snippet is no longer visible
to other snippets (isActive == false). OVERWRITTEN is
also a inal status.

Using JShell from a Program

OpenJDK ofers APIs to developers access to JShell program-
matically rather than by using the REPL. The following code

creates an instance of JShell, evaluates a snippet, and
provides the status of the instructions.

import java.util.List;

import jdk.jshell.*;

import jdk.jshell.Snippet.Status;

public class JShellStatusSample {

 public static void main(String... args) {

 //Create a JShell instance

 JShell shell = JShell.create();

 //Evaluate the Java code

 List<SnippetEvent> events =

 shell.eval("int x, y, sum; " +

 "x = 15; y = 23; sum = x + y; " +

 "System.out.println(sum)");

 for(SnippetEvent event : events) {

 //Create a snippet instance

 Snippet snippet = event.snippet();

 //Store the status of the snippet

 Snippet.Status snippetstatus =

 shell.status(snippet);

 if(snippetstatus == Status.VALID) {

 System.out.println("Successful");

 }

 }

}

The result of the execution of this code is

java JShellStatusSample

Successful

Successful

Successful

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

46

//java 9 /

Wrapping

You are not obliged to declare variables or deine a method
within a class. Classes, variables, methods, expressions, and
statements evolve within a synthetic class (as an artiicial
block). You can deine them in the top-level context or within
a class body, as you wish.

String firstName , lastName ;

| Added variable firstName of type String

| Added variable lastName of type String

String concatName(String firstName,

String lastName) {

return firstName + lastName ;

}

| Added method concatName(String,String)

The following code shows the declaration of variables and a
method in the top-level context. As discussed previously, you
cannot modify classes at the top level; however, as seen in
the following code, you can modify methods within classes.

class Person {

private String firstName ;

private String lastName ;

public String concatName(String firstName,

String lastName) {

return firstName + lastName;

}

}

| Added class Person

Because each statement or expression is created in its own

unique namespace, modiications can be applied at any time
without disturbing the overall functioning of the code.

Forward References and Dependencies

Within the body of a class, you can refer to members that will
be deined later. During evaluation of the code, the references
produce errors. But because JShell works sequentially, the
issue can be resolved by writing the missing member before
actually calling the snippets.

When a snippet A depends on a second snippet B, any
changes in snippet B are immediately propagated in A. Then,
if the dependent snippet is updated, the main snippet is also
updated. If the dependent snippet is invalid, the main snippet
becomes invalid.

How to Run JShell

To run JShell, you need to download and install the latest
early-access preview build for JDK 9 for your environment.
Then, set your JAVA_HOME environment variable and run
java -version to verify your installation. The output of the
command should show something like the following:

java version "9-ea"

Java(TM) SE Runtime Environment (build 9-ea+100-2016-

 01-06-195905.javare.4235.nc)

Java HotSpot(TM) 64-Bit Server VM

...

To run JShell, type jshell at the command line:

[pandaconstantin@localhost ~]$ jshell

| Welcome to JShell -- Version 9-ea

| Type /help for help

When the prompt is available, you can get help on several
useful commands by typing /help at the command line.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

47

//java 9 /

Figure 1 shows the truncated output from that command.
If you declare variables and then initialize them, you can

see them by using the list command, for example:

String firstname;

| Added variable firstname of type String

String lastname;

| Added variable lastname of type String

double grade;

| Added variable grade of type double

String getStudentFullName(String firstname,

 String lastname) {

return firstname + " " + lastname ; }

| Added method getStudentFullName(String,String)

firstname = "Wolfgang" ;

| Variable firstname has been assigned the

 value "Wolfgang"

lastname = "Mozart";

| Variable lastname has been assigned the

 value "Mozart"

System.out.println("Hello " +

getStudentFullName(firstname,lastname));

Hello Wolfgang Mozart

The output of the list command shows the following:

1 : String firstname ;

2 : String lastname ;

3 : double grade ;

/list [all|start|history|<name or id>] -- list the source you have typed

/seteditor <executable> -- set the external editor command to use

/edit <name or id> -- edit a source entry referenced by name or id

/drop <name or id> -- delete a source entry referenced by name or id

/save [all|history|start] <file> -- save: <none> - current source;

 all - source including overwritten, failed,

 and start-up code;

 history - editing history;

 start - default start-up definitions

/open <file> -- open a file as source input

/vars -- list the declared variables and their values

/methods -- list the declared methods and their signatures

/classes -- list the declared classes

/imports -- list the imported items

/exit -- exit the REPL

/reset -- reset everything in the REPL

/feedback <level> -- feedback information: off, concise, normal, verbose,

 default, or ?

Figure 1. Partial list of JShell commands

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

48

//java 9 /

4 : String getStudentFullName

(String firstname, String lastname) {

 return firstname + " " + lastname ;

 }

5 : firstname = "Wolfgang" ;

6 : lastname = "Mozart" ;

7 : System.out.println("Hello " +

getStudentFullName(firstname,lastname));

The numbers in the output are the snippet identiiers. They
are useful for manipulating a snippet (editing, dropping,
and so on.) You can also list all the variables, methods, and
classes that are in the code. Here’s an example of listing all
the variables:

/vars

| String firstname = "Wolfgang"

| String lastname = "Mozart"

| double grade = 0.0

If you decide to change the values of variables or edit a spe-
ciic snippet, you run /edit with the snippet identiier,
for example:

/edit 5

A dialog box appears, which allows you to modify the value.
After you make the change in the dialog box, you will see
output that looks like this:

| Variable firstname has been assigned

 the value "Constantin"

Here’s another example:

/edit 6

| Variable lastname has been assigned

 the value "Drabo"

When I rerun snippet 7, the output is updated accordingly:

/7

System.out.println("Hello " +

getStudentFullName(firstname, lastname));

Hello Constantin Drabo

The /save command enables you to save your snippets to a
ile, and the /open command enables you to open and run
the ile:

/save StudentName.jsh

/open StudentName.jsh

JShell also ofers some keyboard shortcuts. You can obtain the
navigation history by using the up and down arrow keys or
the Enter key. Use the tab key to perform snippet completion,
and interrupt a snippet by using Control-C.

Conclusion

JShell has many possible uses: for testing code, especially
APIs; for educational purposes; and for doing quick mock-ups
in JavaFX.

Whether it is called from the command line or program-
matically, JShell is likely to become one of the most widely
used features of JDK 9. </article>

Constantin Drabo is a software engineer living in Burkina Faso.

He is a NetBeans Dream Teamer and a Fedora Ambassador for the

Fedora Project. He is also the founder of FasoJUG, the irst Java

user group in Burkina Faso (the former Upper Volta).

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

49

//new to java /

Java 7 brought in a brand-new I/O API—usually called
NIO.2—and it should be considered almost a complete

replacement for the original File approach to I/O. The new
classes are contained in the java.nio.file package.

The new API is considerably easier to use for many use
cases. It has two major parts. The irst is a new abstraction
called Path (which can be thought of as representing a ile
location, which may or may not have anything actually at that
location). The second piece is lots of new convenience and
utility methods to deal with iles and ilesystems. These are
contained as static methods in the Files class.

For example, when using the new Files functionality, a
basic copy operation is now as simple as

File inputFile = new File("input.txt");

try (InputStream in =

 new FileInputStream(inputFile)) {

 Files.copy(in, Paths.get("output.txt"));

} catch(IOException ex) {

 ex.printStackTrace();

}

Let’s take a quick survey of some of the major methods
in Files—the operation of most of them is pretty self-
explanatory. In many cases, the methods have return types.
We have omitted handling these, as they are rarely useful
except for contrived examples, and for duplicating the behav-
ior of the equivalent C code:

Path source, target;

Attributes attr;

Charset cs = StandardCharsets.UTF_8;

// Creating files

//

// Example of path --> /home/ben/.profile

// Example of attributes --> rw-rw-rw-

Files.createFile(target, attr);

// Deleting files

Files.delete(target);

boolean deleted = Files.deleteIfExists(target);

// Copying/Moving files

Files.copy(source, target);

Files.move(source, target);

// Utility methods to retrieve information

long size = Files.size(target);

FileTime fTime =

 Files.getLastModifiedTime(target);

System.out.println(fTime.to(TimeUnit.SECONDS));

Map<String, ?> attrs =

 Files.readAttributes(target, "*");

System.out.println(attrs);
BEN EVANS PHOTOGRAPH BY

JOHN BLYTHE

Modern Java I/O
NIO.2 makes many things easier, including monitoring directories for changes.

BENJAMIN EVANS AND
DAVID FLANAGAN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

50

//new to java /

// Methods to deal with file types

boolean isDir = Files.isDirectory(target);

boolean isSym = Files.isSymbolicLink(target);

// Methods to deal with reading and writing

List<String> lines =

 Files.readAllLines(target, cs);

byte[] b = Files.readAllBytes(target);

BufferedReader br =

 Files.newBufferedReader(target, cs);

BufferedWriter bwr =

 Files.newBufferedWriter(target, cs);

InputStream is = Files.newInputStream(target);

OutputStream os = Files.newOutputStream(target);

Some of the methods on Files provide the opportunity to
pass optional arguments, to provide additional (possibly
implementation-speciic) behavior for the operation.

Some of the API choices here produce occasionally annoy-
ing behavior. For example, by default, a copy operation will
not overwrite an existing ile, so we need to specify this
behavior as a copy option:

Files.copy(Paths.get("input.txt"),

 Paths.get("output.txt"),

 StandardCopyOption.REPLACE_EXISTING);

StandardCopyOption is an enum that implements an interface
called CopyOption. This is also implemented by LinkOption.
So Files.copy() can take any number of either LinkOption or
StandardCopyOption arguments. LinkOption is used to specify
how symbolic links should be handled (provided the underly-
ing operating system supports symlinks, of course).

Path

Path is a type that may be used
to locate a ile in a ilesystem. It
represents a path that is

■■ System-dependent
■■ Hierarchical
■■ Composed of a sequence of

path elements
■■ Hypothetical (may not exist

yet, or may have been deleted)
It is therefore fundamentally

diferent from a File. In par-
ticular, the system dependency
is manifested by Path being an interface, not a class. This
enables diferent ilesystem providers to each implement the
Path interface and provide for system-speciic features while
retaining the overall abstraction.

The elements of a Path consist of an optional root com-
ponent, which identiies the ilesystem hierarchy that this
instance belongs to. Note that, for example, relative Path
instances may not have a root component. In addition to the
root, all Path instances have zero or more directory names
and a name element.

The name element is the element farthest from the root of
the directory hierarchy and represents the name of the ile or
directory. The Path can be thought of consisting of the path
elements joined together by a special separator or delimiter.
Path is an abstract concept; it isn’t necessarily bound to any

physical ile path. This allows us to talk easily about the loca-
tions of iles that don’t exist yet. Java ships with a Paths class
that provides factory methods for creating Path instances.
Paths provides two get() methods for creating Path objects.

The usual version takes a String and uses the default ilesys-
tem provider. The URI version takes advantage of the ability
of NIO.2 to plug in additional providers of bespoke ilesys-
tems. This is an advanced usage, and interested developers

Path is an abstract
concept; it isn’t
necessarily bound to
any physical file path, so
you can talk easily about
the locations of files
that don’t exist yet.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

51

//new to java /

should consult the primary documentation:

Path p = Paths.get("/Users/ben/cluster.txt");

Path p =

 Paths.get(new URI(

 "file:///Users/ben/cluster.txt"));

System.out.println(p2.equals(p));

File f = p.toFile();

System.out.println(f.isDirectory());

Path p3 = f.toPath();

System.out.println(p3.equals(p));

This example also shows the easy interoperation between
Path and File objects. The addition of a toFile() method
to Path and a toPath() method to File allows the developer
to move efortlessly between the two APIs and allows for a
straightforward approach to refactoring the internals of code
based on File to use Path instead.

We can also make use of some useful “bridge” methods
that the Files class also provides. These provide conve-
nient access to the older I/O APIs—for example, by provid-
ing convenience methods to open Writer objects to speciied
Path locations:

Path logFile = Paths.get("/tmp/app.log");

try (BufferedWriter writer =

 Files.newBufferedWriter(

 logFile,

 StandardCharsets.UTF_8,

 StandardOpenOption.WRITE)) {

 writer.write("Hello World!");

 // ...

} catch (IOException e) {

 // ...

}

We’re making use of the StandardOpenOption enum, which
provides similar capabilities to the copy options but for open-
ing a new ile instead.

In the next example, we manipulate a JAR ile as a
FileSystem in its own right, modifying it to add an additional
ile directly into the JAR. JAR iles are just ZIP iles, so this
technique will also work for .zip archives:

Path tempJar = Paths.get("sample.jar");

try (FileSystem workingFS =

 FileSystems.newFileSystem(tempJar, null)) {

 Path pathForFile =

 workingFS.getPath("/hello.txt");

 List<String> ls = new ArrayList<>();

 ls.add("Hello World!");

 Files.write(pathForFile, ls,

 Charset.defaultCharset(),

 StandardOpenOption.WRITE,

 StandardOpenOption.CREATE);

}

This shows how we use a FileSystem to make the Path objects
inside it, via the getPath method. This enables the developer
to efectively treat FileSystem objects as black boxes.

One of the criticisms of Java’s original I/O APIs was the
lack of support for native and high-performance I/O. A solu-
tion was initially added in Java 1.4, the Java New I/O (NIO)
API, and it has been successively reined in successive
Java versions.

NIO Channels and Bufers

NIO bufers are a low-level abstraction for high-performance
I/O. They provide a container for a linear sequence of elements
of a speciic primitive type. We’ll work with the ByteBuffer
(the most common case) in our examples.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

52

//new to java /

ByteBufer. This is a sequence of bytes, and can conceptu-
ally be thought of as a performance-critical alternative to
working with a byte[]. To get the best possible performance,
ByteBuffer provides support for dealing directly with the
native capabilities of the platform the JVM is running on.

This approach is called the “direct bufers” case, and it
bypasses the Java heap wherever possible. Direct bufers are
allocated in native memory, not on the standard Java heap,
and they are not subject to garbage collection in the same way
as regular on-heap Java objects.

To obtain a direct ByteBuffer, call the allocateDirect()
factory method. An on-heap version, allocate(), is also
provided, but in practice this is not often used.

A third way to obtain a byte bufer is to wrap an existing
byte[]—this will give an on-heap bufer that serves to pro-
vide a more object-oriented view of the underlying bytes:

ByteBuffer b = ByteBuffer.allocateDirect(65536);

ByteBuffer b2 = ByteBuffer.allocate(4096);

byte[] data = {1, 2, 3};

ByteBuffer b3 = ByteBuffer.wrap(data);

Byte bufers are all about low-level access to the bytes. This
means that developers have to deal with the details manually
—including the need to handle the endianness of the bytes
and the signed nature of Java’s integral primitives:

b.order(ByteOrder.BIG_ENDIAN);

int capacity = b.capacity();

int position = b.position();

int limit = b.limit();

int remaining = b.remaining();

boolean more = b.hasRemaining();

To get data in or out of a bufer, we have two types of opera-
tion—single value, which reads or writes a single value, and
bulk, which takes a byte[] or ByteBuffer and operates on a
(potentially large) number of values as a single operation. It
is from the bulk operations that performance gains would
expect to be realized:

b.put((byte)42);

b.putChar('x');

b.putInt(0xcafebabe);

b.put(data);

b.put(b2);

double d = b.getDouble();

b.get(data, 0, data.length);

The single value form also supports a form used for absolute
positioning within the bufer:

b.put(0, (byte)9);

Bufers are an in-memory abstraction. To afect the outside
world (for example, the ile or network), we need to use a
Channel, from the package java.nio.channels. Channels rep-
resent connections to entities that can support read or write
operations. Files and sockets are the usual examples of chan-
nels, but we could consider custom implementations used for
low-latency data processing.

Channels are open when they’re created, and can subse-
quently be closed. Once closed, they cannot be reopened.
Channels are usually either readable or writable, but not both.
The key to understanding channels is that reading from a
channel puts bytes into a bufer, and writing to a channel
takes bytes from a bufer. For example, suppose we have a
large ile that we want to checksum in 16 MB chunks:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

53

//new to java /

FileInputStream fis = getSomeStream();

boolean fileOK = true;

try (FileChannel fchan = fis.getChannel()) {

 ByteBuffer buffy =

 ByteBuffer.allocateDirect(16 * 1024 * 1024);

 while(fchan.read(buffy) != -1 ||

 buffy.position() > 0 ||

 fileOK) {

 fileOK = computeChecksum(buffy);

 buffy.compact();

 }

} catch (IOException e) {

 System.out.println("Exception in I/O");

}

This will use native I/O as far as possible, and will avoid
a lot of copying of bytes on and of the Java heap. If the
computeChecksum method has been well implemented, then
this could be a very performant implementation.
Mapped byte bufers. These are a type of direct byte bufer
that contain a memory-mapped ile (or a region of one). They
are created from a FileChannel object, but note that the File
object corresponding to the MappedByteBuffer must not be
used after the memory-mapped operations, or an exception
will be thrown. To mitigate this, we again use try-with-
resources, to scope the objects tightly:

try (RandomAccessFile raf =

 new RandomAccessFile(

 new File("input.txt"), "rw");

 FileChannel fc = raf.getChannel();) {

 MappedByteBuffer mbf =

 fc.map(FileChannel.MapMode.READ_WRITE, 0,

 fc.size());

 byte[] b = new byte[(int)fc.size()];

 mbf.get(b, 0, b.length);

 for (int i=0; i<fc.size(); i++) {

 b[i] = 0; // Won't be written back to the

 // file, we're a copy

 }

 mbf.position(0);

 mbf.put(b); // Zeroes the file

}

Even with bufers, there are limitations to what can be done
in Java for large (for example, transferring 10 GB between
ilesystems) I/O operations that perform synchronously on a
single thread. Before Java 7, these types of operations would
typically be done by writing custom multithreaded code and
managing a separate thread for performing a background
copy. Let’s move on to look at the new asynchronous I/O fea-
tures that were added with JDK 7.

Async I/O

The key to the new asynchronous functionality is some new
subclasses of Channel that can deal with I/O operations that
need to be handed of to a background thread. The same
functionality can be applied to large, long-running opera-
tions, and to several other use cases.

In this section, we’ll deal exclusively with Asynchronous
FileChannel for ile I/O, but there are a couple of other
asynchronous channels. There are two diferent ways to
interact with an asynchronous channel—Future style, and
callback style.
Future-based style. The Future interface is beyond the scope
of this article, but it can be thought of as an ongoing task that
may or may not have completed yet. It has two key methods:
isDone(), which returns a Boolean indicating whether the
task has inished, and get(), which returns the result. If the
task is inished, it returns immediately. If not inished, it

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

54

//new to java /

blocks until done.
Here is an example of a program that reads a large ile

(possibly as large as 100 MB) asynchronously:

try (AsynchronousFileChannel channel =

 AsynchronousFileChannel.open(

 Paths.get("input.txt"))) {

 ByteBuffer buffer =

 ByteBuffer.allocateDirect(1024 * 1024 * 100);

 Future<Integer> result = channel.read(buffer, 0);

 while(!result.isDone()) {

 // Do some other useful work....

 }

 System.out.println("Bytes read: " + result.get());

}

Callback-based style. The callback style for asynchronous I/O
is based on a CompletionHandler, which deines two methods,
completed() and failed(), that will be called back when the
operation either succeeds or fails.

This style is useful if you want immediate notiication of
events in asynchronous I/O—for example, if there are a large
number of I/O operations in light, but failure of any single
operation is not necessarily fatal:

byte[] data = {2, 3, 5, 7, 11, 13, 17, 19, 23};

ByteBuffer buffy = ByteBuffer.wrap(data);

CompletionHandler<Integer,Object> h =

 new CompletionHandler() {

 public void completed(Integer written, Object o) {

 System.out.println("Bytes written: " + written);

 }

 public void failed(Throwable x, Object o) {

 System.out.println(

 "Async write failed: "+ x.getMessage());

 }

};

try (AsynchronousFileChannel channel =

 AsynchronousFileChannel.open(

 Paths.get("primes.txt"),

 StandardOpenOption.CREATE,

 StandardOpenOption.WRITE)) {

 channel.write(buffy, 0, null, h);

 Thread.sleep(1000); // So we don't exit too quickly

}

The AsynchronousFileChannel object is associated with a
background thread pool, so that the I/O operation proceeds,
while the original thread can get on with other tasks.

By default, this uses a managed thread pool that is provided
by the runtime. If required, it can be created to use a thread
pool that is managed by the application (via an overloaded
form of AsynchronousFileChannel.open()), but this is not
often necessary.

Finally, for completeness, let’s touch upon NIO’s support
for multiplexed I/O. This enables a single thread to manage
multiple channels and to examine those channels to see
which are ready for reading or writing. The classes to sup-
port this are in the java.nio.channels package and include
SelectableChannel and Selector.

These nonblocking multiplexed techniques can be
extremely useful when writing advanced applications that
require high scalability, but a full discussion is outside the
scope of this article.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

55

//new to java /

Watch Services and Directory Searching

The last class of asynchronous services we will consider
watch a directory or visit a directory (or a tree). The watch
services operate by observing everything that happens in a
directory—for example, the creation or modiication of iles:

try {

 WatchService watcher =

 FileSystems.getDefault().newWatchService();

 Path dir =

 FileSystems.getDefault().getPath("/home/ben");

 WatchKey key =

 dir.register(watcher,

 StandardWatchEventKinds.ENTRY_CREATE,

 StandardWatchEventKinds.ENTRY_MODIFY,

 StandardWatchEventKinds.ENTRY_DELETE);

 while(!shutdown) {

 key = watcher.take();

 for (WatchEvent<?> event: key.pollEvents()) {

 Object o = event.context();

 if (o instanceof Path) {

 System.out.println("Path altered: "+ o);

 }

 }

 key.reset();

 }

}

By contrast, the directory streams provide a view into all iles
currently in a single directory. For example, to list all the Java
source iles and their size in bytes, we can use code like

try(DirectoryStream<Path> stream =

 Files.newDirectoryStream(

 Paths.get("/opt/projects"), "*.java")) {

 for (Path p : stream) {

 System.out.println(p +": "+ Files.size(p));

 }

}

One drawback of this API is that this will only return elements
that match according to glob syntax, which is sometimes
insuiciently lexible. We can go further by using the new
Files.find and Files.walk methods to address each element
obtained by a recursive walk through the directory:

final Pattern isJava = Pattern.compile(".*\\.java$");

final Path homeDir = Paths.get("/Users/ben/projects/");

Files.find(homeDir, 255,

 (p, attrs) -> isJava.matcher(p.toString()).find())

 .forEach(

 q -> {System.out.println(q.normalize());});

It is possible to go even further and construct advanced solu-
tions based on the FileVisitor interface in java.nio.file,
but that requires the developer to implement all four meth-
ods on the interface rather than just using a single lambda
expression as done here.

In sum, you can see that the NIO.2 library provides a lot of
useful functionality and saves you a lot of code. If you’re still
working with pre–Java 7 ile handling, you’re doing far more
work than necessary. </article>

This article was adapted with permission from Java in a Nutshell,
by Benjamin Evans and David Flanagan.

Benjamin Evans is the cofounder of jClarity, a Java Champion and

Rock Star, and a frequent contributor to Java Magazine. David

Flanagan is a software engineer at Mozilla, best known for his

master work JavaScript: the Definitive Guide (O’Reilly, 2011).

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://shop.oreilly.com/product/0636920030775.do

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

56

//new to java /

Welcome back to the discussion of generic types in Java.
In my previous article, I started discussing generics

types—why they are useful, what you can do with them, and
how to use them. The introductory part of this topic was quite
straightforward, but at the end of that discussion I mentioned
a problem: generic collections and subtyping.

In short, I wanted to write a general printList method such
as this:

private void printList(List<Person> list)

And I wanted it to print out lists of subtypes of Person, such
as List<Student> or List<Faculty>. In other words, given that
Student is a subtype of Person, I wanted to call the method
above like this:

List<Student> students = getStudentList();

printList(students);

This does not work in Java. The reason is that List<Student>
is not considered a subtype of List<Person> even though
Student is a subtype of Person.

What’s the Problem?

So why is List<Student> not a subtype of List<Person>? If
you think only about printing out the list, there seems to be
no problem. The printList method could call, for instance,
a print method on all the list’s elements (which might be

deined in Person and redeined appropriately in the sub-
types). All seems well.

The problem becomes apparent when you consider that
the printList method could also modify the list. It could, for
example, include the following line:

list.add(new Faculty());

Because the static type of the list variable (the formal
parameter to the method) is List<Person>, and Faculty is a
subtype of Person, adding this object causes no type prob-
lems. However, if the actual list passed to the printList
method were a list of students, then I have now added a
Faculty object to the Student list! This is a clear error and
should not be allowed to happen.

The only solution is to declare that List<Student> is not a
subtype of List<Person>, and to prevent student lists from
being passed in to the printList method. Type safety is pre-
served, but I am back to square one: How can I now write my
general printList method?

Wildcards to the Rescue

The solution to this problem is the use of wildcards. I can
write my printList method like this:

private void printList(List<?> list)

Note the question mark in place of the element type of

MICHAEL KÖLLING

Generics: The Hard Parts
Wildcards, subtyping, and type erasure in generics

PHOTOGRAPH BY

JOHN BLYTHE

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/MayJune2016#&pageSet=45&page=0

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

57

//new to java /

the list. The question mark is the wildcard symbol, and it
denotes a type called unknown. My parameter is now a list of

unknown type.
There is an obvious beneit to this construct. I can now do

what I intended to do: I can call my printList method with
both List<Student> and List<Faculty> as parameters:

List<Student> students = getStudentList();

List<Faculty> professors = getFacultyList();

printList(students);

printList(professors);

Every list type is considered to be a subtype of the list of this
unknown type, so this code now works. The trade-of is that I
cannot add to the list when the element type is unknown, so
I avoid the type problem discussed earlier when I tried to add
to the list.

What Is Known About the Unknown Type?

The wildcard is a good step forward, but it does not solve all
my problems. You can see this if you think about what I can
do with my list elements now. What if my Person superclass
had a method printAddressDetails that I want to use as part
of my printList method:

private void printList(List<?> list) {

 for (Person p: list) {

 ...

 p.printAddressDetails();

 }

}

This will now not work. The advantage of using the unknown
type is that you can pass in lists of any type, but you pay by
virtue of the fact that you don’t know much about that type.
All you know, in fact, is that it is a subtype of Object (because

every type is a subtype of Object). So I cannot treat element
types as Persons.

Not knowing much about the element type can still be OK
in some cases. I could still use all list operations that do not
depend on the element type, such as size() and clear(). I
could also do anything that I can do with the Object type,
such as using the toString method (maybe implicitly by call-
ing System.out.println).

But to call type-speciic methods, I need something else.
In using the wildcard, I went from saying that my parameter
is exactly a List of Person to saying that it is a List of anything.
Instead, I would like to say that it is a List of any subtype of

Person. I can do this with a bounded wildcard.

Bounded Wildcards

Generic parameters can have bounds, which restrict what
kind of actual types can be used for them. Consider this next
version of my printList method:

private void printList(List<? extends Person> list)

This deinition now allows lists of Person or subtypes of
Person (and only these) as parameters, just as I intended.
Because I am using a wildcard, I am still not allowed to add to
the list, but I know that all elements are of type Person (or its
subtypes). I can now treat elements as Person objects and call
the appropriate methods. This inally solves my problem.

Other Bounded Types

Wildcards are not the only place where bounds can be used
and are useful. Type bounds can also be employed in the dec-
laration of generic types and in methods without wildcards.
For example, I can deine a generic type PersonList that
accepts only Person and its subtypes as parameters:

class PersonList<T extends Person>

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

58

//new to java /

This is similar to the deinition of ArrayList that I showed in
the last issue of Java Magazine, but this time only subtypes of
Person can be used to instantiate the type:

PersonList<Student> students =

 new PersonList<Students>();

PersonList<Faculty> professors =

 new PersonList<Faculty>();

In return, all methods from the Person type can now be used
on objects of type T in my implementation of the PersonList
class, because I have a guarantee that any concrete instantia-
tion of T will have these methods.

Generic Methods

This is a good time to introduce another generic feature:
generic methods. In the previous examples, the generic
type parameter was introduced in the class header when
we declared a generic class. It is also possible to have single
generic methods, without making the whole class generic. In
that case, the single method can handle generic types. Generic
methods are often combined with bounded generic types.

Consider the following example. Here, I attempt to write a
method that prints all elements from a list that are smaller
than a given limit:

public <T> void underLimit(List<T> myList, T limit) {

 for (T e : myList) {

 if (e < limit)

 System.out.println(e);

 }

}

The new syntax here is the type parameter <T> in the header
after the keyword public and before the return type. I am
assuming that this method is in a class that is not generic,

so no type parameter has previously been declared. To use a
generic type in the parameter list, I need to declare this type
irst—that is the efect of writing the type <T> in the header.

 This code will fail, however, because the less-than operator
cannot be applied to any unspeciied type T. Instead, I can
use the compareTo method, but this works only when T is a
subtype of Comparable. I can enforce this by changing my
method as follows:

public <T extends Comparable<T>> void underLimit(

 List<T> myList, T limit) {

 for (T e : myList) {

 if (e.compareTo(limit) < 0)

 System.out.println(e);

 }

}

Here, I have declared that I only accept types for type T that
are subtypes of Comparable so that the methods needed are
guaranteed to be available.

Upper Bounds and Lower Bounds

So far, I have discussed bounded types only by showing an
upper bound to establish a supertype (an upper bound) for the
wildcard parameter, for example:

List<? extends Person>

The efect is that only the named type or its subtypes can
be used to instantiate the type. In other words, the concrete
type at the point of use must extend (or implement) Person.
If we were to draw a typical inheritance hierarchy around
Person, only Person or the classes below it in the hierarchy
can be used.

I can also restrict the type in the other direction, by declar-
ing a lower bound:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

59

//new to java /

List<? super Person>

By using the super keyword for my declaration, I am stating
that the type has to be Person or a supertype of Person. If you
picture this in an inheritance hierarchy, you can use Person
or the types above it in the hierarchy. This is less often used
than upper bounds but can be helpful in some situations.

Implementation

In addition to knowing how to use generic types, it is also
useful to know a little bit about how they are implemented
in the Java compiler and the JVM. If you ever talked with
anyone about the implementation, it is likely that the term
type erasure came up at some stage. It is important to know
what this means, because it afects not only the eiciency of
implementation but also the semantics of your code in cer-
tain cases.

Type Erasure

At the core of type erasure is the fact that type parameters
exist only at compile time; they are completely removed
at runtime. They are a construct exclusively used for type
checking during compilation to ensure type safety, but they
are not carried through into the Java bytecode.

To understand generics at irst, it is often helpful to think of
generic classes as expanded at instantiation time. For exam-
ple, consider the following type:

class List<T> {

 public void add(T elem);

 ...

}

If it is then instantiated by using the concrete type
List<String>, it can be thought of as having every occur-
rence of T in the source text replaced by String, so that the

parameter type in the add method becomes String. For
List<Integer>, each T would be replaced by Integer, and
so on.

This is a useful mental model to start understanding
generics, but it is ultimately false. It is useful, because it is
easy to understand, and it gives a good approximation of
how generics behave. It is important to know, however, how
things really work, because sometimes that makes a notice-
able diference.

Generic types are never expanded into their concrete
instantiations: not in source code, not in binary code, not on
disk, and not in memory. This is diferent than templates in
C++, for example, where this expansion actually happens. In
Java, the generated code will just insert Object as the type for
each unbounded type parameter, or the bounding type for
types that have bounds. Thus, List<String>, List<Integer>,
and List<Person> are all represented by a single class
List<Object> by the time your program executes. By then,
the compiler has made sure that you used the class in a type-
safe manner, and type problems have been prevented. You
used many types but get only one class.

Discarding type parameter information at runtime has
advantages and disadvantages. One of the advantages is that
it saves time and space: the class ile needs to exist only once
for every generic class. It does not need to be stored or com-
piled multiple times. This is a clear beneit.

On the downside, type erasure makes life harder for tool
writers, such as creators of development environments. It
is hard, for example, for a debugger to igure out the correct
type for an object at runtime if that type is derived from a
generic class. No information is kept in the class ile about
the full type information.

More important for you as a programmer is the fact that type
erasure can inluence the behavior of your code. The following
sections describe examples where it is necessary to understand
type erasure to understand the behavior of the Java system.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

60

//new to java /

No instanceof for Types with Type Parameters

The instanceof operator cannot be used with parameterized
types. Consider the following attempt to use List<T> as
deined in the previous section:

if (list instanceof List<Person>) {

 List<Person> pl = (List<Person>) list;

}

This code looks entirely reasonable, but if you consult the
previous section on type erasure, you will see why it does
not work: the runtime system has no idea whether a type
is List<Person>, because it does not keep this information
around. (All it knows about is List<Object> but nothing more
speciic.) So it cannot perform this check and give you the
answer. You will see an error saying illegal generic type
for instanceof.

The same problem shows up when you use the getClass
method:

List<Student> sl = new ArrayList<Student>();

List<Faculty> fl = new ArrayList<Faculty>();

if (sl.getClass() == fl.getClass())

 ...

At irst glance, you might think that the condition in the if-
statement is false, but because of type erasure, it will actually
evaluate to true. As far as the runtime system is concerned,
the class of both objects is ArrayList.

Generic Classes and Static Attributes

One of the areas where type erasure becomes most visible
in source code is when you use static attributes in generic
classes. Static methods and static ields are shared between
all instantiations of a generic class. The reason is again the
same: only one copy of the generic class actually exists. You

have to be aware of this to write correct code. A side efect
of this is that it is not possible to declare a static ield of a
generic parameter type:

class MyClass<T> {

 private static T value; // error

 ...

}

Because this ield is shared between all variants of the type, it
cannot refer to the type parameter of speciic instantiations.

Java Trivia: Arrays and Type Safety

If you are interested in the details of Java and type safety, you
might like this little bit of Java trivia: the implementation of
arrays in Java has a hole in its type system. This is one of the
rare cases where Java is not statically type-safe.

The problem is the same problem I discussed earlier in
this article: If B is a subtype of A, is then List a subtype of
List<A>? For lists, the answer is no. Earlier in this article, I
explained why this is and how it could go wrong if we were to
consider List a subtype. However, for arrays (a very simi-
lar situation), Java does consider the list to be a subtype. This
introduces a potential type problem. Consider the following
code:

A[] aa;

B[] ba = new B[3];

aa = ba; // allowed! B[] is subtype of A[]

aa[0] = new B();

aa[1] = new A(); // java.lang.ArrayStoreException: A

The last line in this example represents a type error: I am
trying to insert an A object into an array of B. The problem is
that the assignment in the third line is allowed. This problem

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

61

//new to java /

is picked up only at runtime, not at compile time, breaking
Java’s static type safety. When it designed generic classes,
the Java team decided to be more conservative and detect the
equivalent problem at compile time.

Conclusion

Generic types are easy to understand in principle and gener-
ally quite easy to use. However, when you start writing more
sophisticated code—particularly if you’re writing libraries—
you might run into a whole range of situations where you need
to understand the advanced constructs in generics.

When you put all of the concepts together, the class and
method deinitions can become quite tricky to read even for
experienced programmers. Have a look at the max method of
class Collections in the standard library, for example, or the
deinition of methods in the Class class. You will see that it
can take some time to get your head around the combination
of all the constructs. Do not let this discourage you; these
complex constructs are rare, and with the concepts I have
discussed here and some practice, you should be able to work
out most of it. More importantly, you should be able to write
correct and lexible code yourself. </article>

Michael Kölling is a Java Champion and a professor at the

University of Kent, England. He has published two Java textbooks

and numerous papers on object orientation and computing educa-

tion topics, and he is the lead developer of BlueJ and Greenfoot,

two educational programming environments. Kölling is also a

Distinguished Educator of the ACM.

The Java Tutorial on generic types

learn more

For most readers, the idea of a linker for Java might
seem very peculiar indeed. Linker functions, which are
part of a build tool associated with native languages, are
performed by the JVM in its class-loading mechanism.
In particular, these functions are executed in the algo-
rithms for inding JARs that contain referred-to classes
and methods and then loading them into the current JVM
memory space. [For more information on this process,
download a PDF of our article “How the JVM Locates,
Loads, and Runs Libraries” by Oleg Šelajev. —Ed.]

What JEP 282 proposes is not the traditional linker but,
rather, a generic tool that runs where a linker does in the
build process—after the compiler but before creation of
the executable. The tool would deine a plugin interface,
by which a variety of tools could be inserted into the build
process. The most obvious of these would be an optimizer,
especially a whole-program optimizer that could iden-
tify opportunities to improve performance and reduce
code size that are not visible to the compiler on a class
basis. Other plugins suggested in the JEP document could
remove debug information, reorder resources so that they
can be loaded faster, and even compress generated iles.

In theory, many other reinements to generated code
could be performed—including those from third parties.
Some examples are insertion of instrumentation data,
supplementation of debugging data, conversion of byte-
codes to other formats, intraclass optimization, and so
on. All of this could be done through plugins to the pro-
posed jlink technology.

JEP 282 jlink: The Java Linker

FEATURED JDK ENHANCEMENT PROPOSAL

//java proposals of interest /

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/tutorial/java/generics/types.html
https://goo.gl/JIaBF5
https://goo.gl/JIaBF5
http://openjdk.java.net/jeps/282

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

62

//jvm languages /

In May, the JRuby team released JRuby 9.1, the latest
version in the JRuby 9000 line. The team put a lot of hard

work into making JRuby 9000 the best implementation of
Ruby available. As a member of the team, I will demonstrate
why you might want to take a look at Ruby on the JVM, spe-
ciically using JRuby.

What Is Ruby?

Ruby is a dynamically typed, object-oriented language inspired
by Smalltalk, Perl, and Lisp. It was created in 1995 by Yukihiro
“Matz” Matsumoto; Ruby 2.3 is the current version. Over the
past 10 years, it has become one of the top 10 languages in use,
driven in part by the success of the Ruby on Rails web frame-
work. These days, Ruby is used by some of the biggest compa-
nies in the world, and not just for web development.

Unfortunately, the standard implementation of Ruby—
usually referred to as CRuby or MRI (Matz’s Ruby Implemen-
tation)—lacks some features modern developers want and
often need such as a high-speed just-in-time (JIT) compiler;
scalable, low-pause garbage collection; and true parallel exe-
cution. That’s where JRuby comes in.

What Is JRuby?

JRuby is an implementation of Ruby atop the JVM, written
mostly in Java (but a growing amount in Ruby) and supporting

99 percent of Ruby features. As much as possible, the JRuby
team has tried to ensure that JRuby remains compatible with
CRuby, all while leveraging the JVM’s power.

JRuby’s garbage collector is the JVM’s garbage collector,
and there are a lot of excellent garbage collectors available
for today’s JVMs. [For a comparison of several JVM garbage
collectors, see “The New Garbage Collectors in OpenJDK” by
Christine Flood in the March/April issue of this year. —Ed.]
JRuby’s threads are JVM threads, which means true paral-
lel execution of Ruby code. JRuby compiles Ruby code to JVM
bytecode, which the JIT can then compile to native machine
code. In fact, JRuby was the irst Ruby implementation to
have any native JIT capabilities.

These features all combine to create an extremely power-
ful tool: all the beauty and fun of programming Ruby with the
best of the JVM. So, what can you do with this tool?

Getting Started

JRuby, like most JVM-based libraries and applications, is dis-
tributed in a number of prebuilt binary forms.

Most users will want a full JRuby distribution, available at
http://jruby.org, which includes command-line utilities (like
the ruby and gem commands), the Ruby standard library, and
a ilesystem layout similar to CRuby. I recommend the use of
so-called “Ruby switchers” such as RVM, which will down-

CHARLES NUTTER

JRuby 9000: Beautiful Language,
Powerful Runtime
A simple language that inspired Ruby on Rails and can greatly facilitate complex Java coding,
such as JavaFX development, using native libraries

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/MarApr2016#&pageSet=20&page=0
http://jruby.org

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

63

//jvm languages /

load and install the latest JRuby implementation.

$ rvm install jruby-9.1.2.0

Searching for binary rubies, this might take some time

Found remote file /Users/headius/.rvm/...

Checking requirements for osx.

Requirements installation successful.

jruby-9.1.2.0 - #configure

jruby-9.1.2.0 - #download

jruby-9.1.2.0 - #validate archive

jruby-9.1.2.0 - #extract

jruby-9.1.2.0 - #validate binary

jruby-9.1.2.0 - #setup

...

See RVM’s home page for more details, or try out one of the
other Ruby switchers.

For folks who prefer a more direct approach, you can simply
download a tarball (.tar.gz) or a zip ile containing a full JRuby
distribution. Unpack it, add the bin directory to your PATH,
and you’re of to the races. JRuby also comes in a Windows
installer that can optionally install a JRE for you as well.

JRuby also publishes a full complement of Maven artifacts
under the “org.jruby” group, which is useful for embedded
applications that will not need a complete on-ilesystem
JRuby distribution.

Once installed, JRuby’s command line matches CRuby’s:

$ jruby -v

jruby 9.1.2.0 (2.3.0) 2016-05-26...

$ jruby -e "puts 'Hello, Ruby'"

Hello, Ruby

And Ruby’s interactive console, IRB, is available as well:

$ irb

jruby-9.1.2.0 :001 > puts "hello"

hello

...

Ruby on Rails

Every web developer should have heard of Ruby on Rails by
now. It changed the way developers do web development,
from introducing the idea of sensible defaults (convention
over coniguration) to rich code generation (scafolding) and
database-agnostic schema versioning (migrations). Most web
frameworks today copy some aspect of Rails, in some cases
even mimicking the ilesystem layout of Rails applications or
reusing Rails-inspired terms for similar features.

Next, I walk through getting a simple Rails app running on
JRuby.

But irst, I need to install Rails using the gem install
command. Most libraries for Ruby are distributed as “gems”
hosted on RubyGems.org. From a Java perspective, think of a
Ruby gem as a Maven library plus some executable scripts for
the command line.

$ gem install rails

Fetching: rack-1.6.4.gem (100%)

Successfully installed rack-1.6.4

Fetching: sprockets-3.6.0.gem (100%)

Successfully installed sprockets-3.6.0

...

Fetching: rails-4.2.6.gem (100%)

Successfully installed rails-4.2.6

23 gems installed

$ rails new my_app

 create

 create README.rdoc

 create Rakefile

...

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://rvm.io/
https://gist.github.com/headius/9166a56bc7146628ae78a4b508b9f7f5#file-rails_example1-txt

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

64

//jvm languages /

 create vendor/assets/stylesheets

 create vendor/assets/stylesheets/.keep

 run bundle install

Fetching gem metadata from https://rubygems.org/

Fetching version metadata from https://rubygems.org/

Fetching dependency metadata from https://rubygems.org/

Resolving dependencies..............

Using i18n 0.7.0

Using json 1.8.3

Installing minitest 5.9.0

...

Installing sass-rails 5.0.4

Installing turbolinks 2.5.3

Bundle complete! 11 Gemfile dependencies,

 54 gems now installed.

Use 'bundle show [gemname]' to see where

 a bundled gem is installed.

[Due to width constraints, some lines in this output and
in other output shown in this article have been truncated,
folded, or had unnecessary data removed. —Ed.]

Now the magic of Rails starts to kick in. By using the
rails new command, I get a fully functional, bare-bones
application, complete with a welcome page, a convention-
based ilesystem layout, and a basic database coniguration
using sqlite3 (you can specify a diferent database with the
-d lag). Rails constructs the application and then runs the
bundle command. Bundler is a gem-based dependency man-
agement tool for applications; Rails builds a Gemile contain-
ing a list of all libraries required for the app, and Bundler
makes sure they’re installed.

At this point, I can start up the Rails application, even
though I haven’t written any logic.

$ cd my_app

$ rails server

=> Booting WEBrick

=> Rails 4.2.6 application starting in

 development on http://localhost:3000

=> Run 'rails server -h' for more startup options

=> Ctrl-C to shutdown server

[2016-06...] INFO WEBrick 1.3.1

[2016-06...] INFO ruby 2.3.0 (2016-06-06) [java]

[2016-06...] INFO WEBrick::HTTPServer#start:

 pid=37393 port=3000

Let’s quickly scafold some basic functionality for our appli-
cation. In Rails, scafolding is code generated at development
time that provides a rough structure for your application. You
can tell Rails to generate models, views, controllers, tests,
and more. The following example generates the basic code for
CRUD operations against a “post” with a “title” and a “body.”

$ rails generate scaffold post title body:text

 invoke active_record

 create

 db/migrate/20160606083900_create_posts.rb

 create app/models/post.rb

 invoke test_unit

 create test/models/post_test.rb

 create test/fixtures/posts.yml

 invoke resource_route

 route resources :posts

 invoke scaffold_controller

 create app/controllers/posts_controller.rb

 invoke erb

 create app/views/posts

 create app/views/posts/index.html.erb

 create app/views/posts/edit.html.erb

 create app/views/posts/show.html.erb

 create app/views/posts/new.html.erb

 create app/views/posts/_form.html.erb

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

65

//jvm languages /

 invoke test_unit

 create

 test/controllers/posts_controller_test.rb

...

In addition to the actual application code and tests, the scaf-
folding generated what’s called a database migration. This is a
short script that can take one version of the database scheme
and apply changes needed to migrate to the next version.
These migrations allow you to roll schemas back and forth in
a database-agnostic way.

Then I just need to roll the database migration forward and
start the server again.

$ rake db:migrate

== 20160606083900 CreatePosts: migrating =========

-- create_table(:posts)

 -> 0.0075s

 -> 0 rows

== 20160606083900 CreatePosts: migrated (0.0099s)

$ rails server

=> Booting WEBrick

...

Here I am using the rake com-
mand, which is roughly equiva-
lent to using Ant or Maven,
minus the dependency manage-
ment. Once Rails has migrated
to the latest database schema,
I can start up the server and,
presto, I have a basic web GUI for
CRUD operations.

Rails is still the killer app for
Ruby, and if you haven’t tried it

before, perhaps JRuby can be your excuse to try it now. Check
out the excellent documentation and tutorials on the Rails
site, or pick up one of the many Rails books out there.

OK, I’ve built a killer app. Now, how do I deploy it with JRuby?

Deploying Rails on JRuby

In CRuby, if you want to handle any requests in parallel, you
need to spin up separate processes— that is, completely inde-
pendent VMs that share no resources. As a result, even small
applications will consume more memory, and if they need to
do any communication, you’re forced to use some interpro-
cess communication. Data sharing has to be done in a third
process, such as a database or memcached, because those
processes share only read-only application structure. Now
you have a whole bunch of Ruby virtual machines running,
each with its own heap and garbage collector—this is not the
best use of resources in this multicore era.

In JRuby, you can take that same Rails application and han-
dle your entire load inside a single process, with a single gar-
bage collector tuned for concurrency and scalable heaps. That
one process can be a standalone server, or you can deploy
“JRuby on Rails” as a Java WAR ile to any standard web con-
tainer such as Tomcat or WildFly. Whether you’re coming to
JRuby from Ruby or Java, deployments of JRuby applications
it your world and make better use of your hardware.

For simple, standalone use, the Puma gem, which is
the most popular pure-Ruby web server, is generally
recommended.

$ gem install puma

Fetching: puma-3.4.0-java.gem (100%)

Successfully installed puma-3.4.0-java

1 gem installed

$ puma

Puma starting in single mode...

* Version 3.4.0 (jruby 9.1.3.0-SNAPSHOT - ruby 2.3.0),

JRuby supports
two-way integration
with other JVM
languages, so all
those Java libraries
you’re familiar with can
still be in your toolbox.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

66

//jvm languages /

 codename: Owl Bowl Brawl

* Min threads: 0, max threads: 16

* Environment: development

* Listening on tcp://0.0.0.0:9292

Use Ctrl-C to stop

If you need to deploy to an existing Java app server or web
container, use the Warbler gem to package your Rails app
(plus all its dependencies) into a deployable WAR ile.

$ gem install warbler

Fetching: rubyzip-1.2.0.gem (100%)

Successfully installed rubyzip-1.2.0

Fetching: jruby-rack-1.1.20.gem (100%)

Successfully installed jruby-rack-1.1.20

Fetching: jruby-jars-9.1.2.0.gem (100%)

Successfully installed jruby-jars-9.1.2.0

Fetching: warbler-2.0.3.gem (100%)

Successfully installed warbler-2.0.3

4 gems installed

$ warble

rm -f my_app.war

Creating my_app.war

That’s all there is to it.

Scripting Java

There’s another feature of JRuby that makes it even more
attractive for Ruby and Rails developers: you can call
any library on the JVM as if it were just another piece of
Ruby code.

JRuby supports two-way integration with other JVM lan-
guages, so all those Java libraries you’re familiar with can still
be in your toolbox. In fact, scripting Java libraries with JRuby
is often much more fun and much easier than writing Java
code. Let’s have a look at a few examples.

java_import java.lang.System

Frame = javax.swing.JFrame

Button = javax.swing.JButton

Label = javax.swing.JLabel

frame = Frame.new("Java Home Checker")

button = Button.new("Display Java Home")

label = Label.new

button.add_action_listener do

 label.text = System.get_property('java.home')

end

frame.content_pane.layout = java.awt.FlowLayout.new

frame.content_pane.add(button)

frame.content_pane.add(label)

frame.set_default_close_operation(Frame::EXIT_ON_CLOSE)

frame.set_size(500, 100)

frame.visible = true

sleep

This simple example already shows some of JRuby’s advan-
tages. Speciically, imports are just plain Ruby code. The code
shows two ways to import a class: using the java_import
function or simply using the fully qualiied long class name
(and assigning it to a short one).

Java method names are tweaked a bit to make them look
more like Ruby method names: snake_case is used instead of
camelCase, set/get properties can omit set/get and be called
by just the attribute name, parentheses are optional, and so
on. In fact, you might not even know this code calls a Java
library if you weren’t familiar with Swing.

Simple interfaces can be implemented on the ly by passing

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

67

//jvm languages /

a block of code, similar to Java 8 lambdas. But JRuby can also
dynamically add an interface implementation to any object,
and it doesn’t have to implement all methods (usually by
including a method_missing fallback).

There’s a lot less noise and ceremony in this code than
there would be in the Java version.

Let’s take a look at a few more-advanced examples of what
you can do with JRuby’s Java integration.

JRubyFX

In late 2008, Sun Microsystems released the irst version of
JavaFX, a new GUI toolkit inspired by web technologies and
destined to be the replacement for Swing. JavaFX initially had
its own language, JavaFX Script, but in an already tight world
of language options, only the GUI Toolkit survives to this
day. That means you’ll be writing your JavaFX logic in Java.
Perhaps a little JRuby can help here, too.

Enter JRubyFX, a Ruby API and wrapper for writing JavaFX
applications. Let’s walk through a simple example.

01 require 'jrubyfx'

02

03 class HelloWorldApp < JRubyFX::Application

04 def start(stage)

05 stage.title = "Hello World!"

06 stage.width = 800

07 stage.height = 600

08 stage.show()

09 end

10 end

11

12 HelloWorldApp.launch

On line 1, I require jrubyfx, which is a set of bindings for
the JavaFX library, so I can use its features. In Ruby, libraries
are brought into the process using require. Generally these

libraries are installed on the local ilesystem as Ruby sources,
but occasionally they will bring along extensions written in
other languages.

On line 3, I have a Ruby class deinition extending the
JRubyFX::Application class. Classes in Ruby are declared
with the class keyword, just as in Java, but instead of having
an extends keyword Ruby uses the less-than symbol (<). The
double colons are Ruby’s way to indicate namespacing.

The irst method deinition is on line 4. Because Ruby
is dynamically typed, there are no type declarations for a
method return or method parameters.

Lines 5 through 8 set up the stage. I set a title and window
size (using Ruby-style attribute assignment rather than Java’s
“set” methods), and then I tell JavaFX to show the stage.

Lines 9 and 10 end the method and the class deinition.
Most lexical scopes in Ruby are closed with the end keyword,
although short blocks (lambdas) frequently use curly braces.

And inally, on line 12, I tell the new JRubyFX application to
launch itself. It’s that easy.

Now let’s look at how Ruby can really make the application
fun and easy to write.

def start(stage)

 with(stage, title: "Hello World!") do

 layout_scene(800, 600) do

 label("Hello World!")

 end

 end

 stage.show # you can also put the

 # method call inside the block

end

Here, the start method is a bit more complicated. The most
obvious change is the call to with, which takes a block of code
using JRubyFX’s scene-building DSL. Given the Stage pro-
vided by JavaFX and a title, I proceed to build the stage’s con-

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

68

//jvm languages /

tents. I tell the DSL how to lay out this scene, and then I add
some actual content: a JavaFX label.

What about FXML, JavaFX’s XML-based markup for describ-
ing scenes? Building the scene with Ruby is great (and cer-
tainly a lot less hassle than doing it in Java), but for larger
applications, you probably want a description of the GUI that’s
separate from the application code.

Here’s an FXML deinition for my simple scene:

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>

<?import java.util.*?>

<?import javafx.scene.control.*?>

<?import javafx.scene.layout.*?>

<?import javafx.scene.paint.*?>

<?import javafx.scene.text.*?>

<HBox alignment="CENTER"

 xmlns:fx="http://javafx.com/fxml">

 <children>

 <Label text="Hello World!!" underline="true">

 </Label>

 </children>

</HBox>

Using this deinition in JRubyFX is as simple as adding a call
to the fxml method, as shown next.

def start(stage)

 with(stage, title: "Hello World!",

 width: 800, height: 600) do

 fxml "Hello.fxml"

 show

 end

end

JRuby and JavaFX work really well together, so if you haven’t
had a chance to try JavaFX, JRubyFX might be the most fun
you’ll have this week. Check out the complete Getting Started
page for JRubyFX.

Beyond the JVM

JRuby strives to be pure Java (and some Ruby) as much as
possible, and it supports users on a wide array of platforms,
from Linux to OpenVMS. The platform-independence of
Java serves you well here. Unfortunately, that independence
sometimes means you can’t integrate with the host platform
as well as a native application can (or, in this case, as well as
CRuby can).

To maintain JRuby’s high level of compatibility, you often
need to call out to native libraries. Normally on the JVM this
would mean writing a lot of Java Native Interface (JNI) code
for every function to be called from Java, building the code
for all supported platforms, and shipping that ever-growing
binary with JRuby. That approach obviously doesn’t scale,
so the JRuby team took a diferent approach: it uses the Java
Native Runtime (JNR) to load and bind libraries dynamically
at runtime.

JNR—similar to Java Native Access (JNA), which you might
already be familiar with—uses a low-level binding for libi
(the foreign function interface [FFI] library used by most
UNIX platforms) to pull a library in, ind the needed function,
and bind it to a Java interface. JRuby pulls in and binds a large
number of POSIX functions, UNIX socket support, native I/O
ile descriptors, and much more.

As a Rubyist, you can also leverage JRuby’s native support
via the i gem, which provides an easy-to-use Ruby API to
call native libraries.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/jruby/jrubyfx/wiki/Getting-Started
https://github.com/jruby/jrubyfx/wiki/Getting-Started

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

69

//jvm languages /

require 'ffi'

module POSIX

 extend FFI::Library

 attach_function :getuid, :getuid, [], :uint

 attach_function :getpid, :getpid, [], :uint

end

pid, uid = POSIX.getpid, POSIX.getuid

puts "Process #{pid} running as user #{uid}"

In this example, I’ve created a Ruby module to hold native
function bindings. Think of a module as an interface with
default implementations for every method. Those methods
can be class methods (similar to static methods in Java) or
instance methods that are added to a class hierarchy when
the module is included (similar to implementing an interface
in Java).

Inside the LibC module, in the next listing, I extend the
FFI::Library module, which injects other FFI methods I
can use to bind functions and deine native data types. Now
I have access to attach_function from the previous listing,
which takes as arguments the name of the function I want
to call, an optional Ruby name to assign to the function, and
information about parameter types.

That’s it. Run this code on JRuby, and you’ll see the real, live
process ID and user ID for the host JVM—something that’s
not possible to do with pure Java code.

class Timeval < FFI::Struct

 layout :tv_sec => :ulong, :tv_usec => :ulong

end

module LibC

 extend FFI::Library

 attach_function :gettimeofday,

 [:pointer, :pointer], :int

end

t = Timeval.new

LibC.gettimeofday(t.pointer, nil)

puts "t.tv_sec=#{t[:tv_sec]} \

 t.tv_usec=#{t[:tv_usec]}"

JRuby’s FFI also provides a way to deine native data types,
such as structs. In the preceding code, I deine a Timeval
struct that has an in-memory layout of two unsigned longs:
tv_sec and tv_usec. I bind in the libc gettimeofday function,
construct a new instance of Timeval, and make the call. The
native call populates a native struct that I can then read from
like a normal Ruby object, all without writing a line of C code.
Pretty cool, right?

FFI is capable of much more than this, and there are many
large production apps out there leveraging JRuby’s native capa-
bilities. For more information, stop by the Ruby FFI project.

The Future of JRuby 9000

JRuby 9000 represents one of the most advanced JVM lan-
guage implementations available. It has its own bytecode-like
intermediate representation, an optimizing compiler, and a
mixed-mode interpreter plus a JIT compiler (very much like
the JVM itself). The JRuby team has been pushing the limits
of what a language can do atop the JVM. In fact, JRuby is cur-
rently the fastest Ruby implementation available. By the end
of this year, the team hopes to utilize its internal representa-
tion (IR) runtime to make all JRuby code perform compara-
bly to equivalent Java code, without sacriicing any of Ruby’s
unique features.

But the JRuby team is not stopping there. In late 2014,
the team partnered with Oracle Labs to open-source their
Trule-based Ruby implementation as part of the JRuby
project. Trule is a next-generation language runtime that

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/ffi/ffi

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

70

//jvm languages /

lives alongside JVM bytecode but it uses the pure-Java Graal
JIT compiler to directly optimize a language’s behavior. As a
result, JRuby plus Trule might prove to be the fastest way
to run Ruby on any runtime, albeit with the requirement that
you run on a Graal-friendly JVM such as JDK 9. The JRuby
team hopes to see the JRuby plus Trule runtime production-
ready in the next couple of years.

The team is very excited, both about its IR runtime and
about Trule’s potential. Ruby is no longer a slow language.

Conclusion

Ruby is a beautiful, fun language with a rich ecosystem and
a friendly, helpful community. That community has built
Rails into the powerhouse it is today—the fastest way to get
a well-structured web application deployed to production.
You can leverage the best of the Ruby world and the best of
the Java world using JRuby—deploying to the same servers,
using the same libraries, getting the best out of the JVM—
and you just might have fun doing it. It’s a great time to
try JRuby. </article>

Charles Nutter is a Java Champion who works at Red Hat on

JVM languages and bending the JVM to his whims. He has been a

co-lead of the JRuby project for the past 10 years, and worked as

a lead Java EE architect for many years before that. He hopes to

keep the Java platform open and evolving, and works to expand the

platform to new languages and new ways of building software.

Home of the Ruby language (non-JVM)

Trule on the JDK

learn more

//user groups /

BUCHAREST JUG
Bucharest, Romania, is a
regional leader in soft-
ware development. The
Bucharest Java User Group
was formed to create a
strong community for all
the developers in Bucharest
who are using Java- and
JVM-based programming
languages.

The irst meeting took
place in May 2012 with approximately 25 participants. The
Java user group (JUG) is now led by Alex Proca and Alin
Pandichi and has more than 600 registered members. It
organizes monthly meetings with one or two presentations,
starting around 7 p.m.; later on, it moves to a pub for drinks.
Occasionally, it hosts hands-on labs such as the recent work-
shops on the MVC 1.0 (JSR 371) Java EE speciication and on
JavaFX. Around 50 participants usually attend the talks, and
10 attend the workshops.

The speakers are often selected from the local pool of
talented Java developers—for instance, Eugen Paraschiv (also
known as Baeldung), whose tutorials and reviews have gar-
nered a sizable following. From time to time, the JUG hosts
international speakers such as Java Champion Axel Fontaine,
who gave a presentation about immutable infrastructure.

Local interest in Java, catalyzed by the JUG, led to a Java
conference, Voxxed Days Bucharest, which was irst held in
March 2016. The organizers are already looking forward to
next year’s event.

The Bucharest JUG keeps in close contact with members
of the worldwide Java communities. Contact it via email or
follow it on Twitter, Facebook, Google+, or Meetup.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.ruby-lang.org/en/
https://wiki.openjdk.java.net/display/Graal/Truffle+FAQ+and+Guidelines
https://bjug.ro/
https://voxxeddays.com/bucharest/
mailto:hello%40bjug.ro?subject=
https://twitter.com/bucharest_jug
https://www.facebook.com/Bucharest-Java-User-Group-723622291107973
https://plus.google.com/communities/112173118183013194524
http://www.meetup.com/Bucharest-Java-User-Group/

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

71

//ix this /

I ’ve put together more interesting problems that simulate
questions from the 1Z0-809 Programmer II exam, which is

the certiication test for developers who have been certiied
at a basic level of Java programming knowledge and now are
looking to demonstrate more-advanced expertise. [Readers
wishing basic instruction should consult the “New to Java”
column, which appears in every issue. —Ed.]
Question 1. Given this class declaration:
public class Tire { private int diameter, width; }

Which two actions are normally performed to support simple use

in the Collections framework? Choose two.
a. Add a method with the signature public boolean

equals(Tire t).
b. Add a method with the signature public int

hashCode(Tire t).
c. Add a method with the signature public boolean

equals(Object o).
d. Add a method with the signature public int

hashCode().
e. Arrange that the class implements Comparable<Tire>.

Question 2. Given the following code:
public class BaseException extends Exception {}

public class OneException extends BaseException {}

public class TwoException extends BaseException {}

public class ThreeException extends Exception {}

public class MultiCatch {

 public void fingersCrossed()

 throws OneException, TwoException,

 ThreeException { }

 public void tryThingsOut() /* Point A */{

 try {

 fingersCrossed();

 } catch (OneException | TwoException ex) {

 ex.printStackTrace();

 throw ex;

 } catch (ThreeException e) {

 e.printStackTrace();

 }

 }

}

Which is the best change? Choose one.
a. No change is necessary; the code is ideal as shown.
b. The code should be modiied by adding at /* Point A */

the text throws Exception.
c. The code should be modiied by adding at /* Point A */

the text throws BaseException.
d. The code should be modiied by adding at /* Point A */

the text throws OneException, TwoException.
e. The code should be modiied by adding at /* Point A */

the text throws OneException, TwoException,
ThreeException.

SIMON ROBERTS

Quiz Yourself
More subtle questions from an author of the Java certification tests

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

72

//ix this /

Question 3. Given the following code:
System.out.println(

 Stream.empty().findAny()

 // Line n1

);

Which two, applied independently, may be added at line n1 to

cause the output "Empty"? Choose two.
a. .ifPresent(s->s).orElse("Empty")

b. .orElse("Empty")

c. .orElseGet(() -> "Empty")

d. .orElseGet("Empty")

e. .orElseSupply(()->"Empty")

f. .otherwise("Empty")

Question 4. Which of the following two statements, indepen-

dently, might be good uses of assertions? Choose two.
a. assert x >= 0 : "X must be non-negative";

b. assert x++ > 0;

c. assert x == 0;

d. assert (++x > 0 , "X must be non-negative");

e. assertTrue "X must be zero" : x == 0;

Question 1. The correct answers are options C and D. In this
question, there are three methods to choose among: equals,
hashCode, and the compareTo method of the Comparable
interface. While order comparisons are certainly relevant
to some parts of the Collections API—notably those that

actually depend on ordering, such as TreeSet—order isn’t
really a fundamental part of the API as a whole. However,
the idea of equality is absolutely fundamental. The basic
way that most collections determine whether they contain
one particular object is by using the equals method to see
whether the object in the collection is equivalent to the one
being asked about.

So, equals is almost certainly the irst method you’ll
think about implementing for any class that’s going to be
stored in a collection, at least if there’s any chance of need-
ing to ind it directly. The next question is which of the
two proposed method signatures is correct. Both will com-
pile, but the actual signature must take an Object argu-
ment. There are two reasons. First, from a syntax perspec-
tive, this method must override the equals method deined
in java.lang.Object, and that’s deined to take an Object
argument. Second, from a philosophical perspective, it’s
perfectly reasonable to ask whether “this apple is equal to
that banana.” The answer is simply “no.” It’s tempting in
these days of familiar generics to think that the method
would take an argument of the object’s own type, but if that
method is implemented, it will be ignored by the Collections
API. So, option A is incorrect, and option C is the proper
equals method. Don’t forget that when overriding a method,
it’s good practice to use the @Override annotation. That
will ensure that if you declare the argument as anything
other than Object, the compiler will tell you that you made
a mistake.

Next, the documentation for equals states, “Note that it is
generally necessary to override the hashCode method when-
ever this method is overridden, so as to maintain the general
contract for the hashCode method, which states that equal
objects must have equal hash codes.”

Given this requirement, it’s pretty clear that implement-
ing equals almost mandates implementing hashCode. The
remaining question is what the signature should be. Given

Answers

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

73

//ix this /

that this is an instance method, and it generates a represen-
tative number based on the contents of this, it’s fairly clear
that no argument is needed, and indeed, the documentation
shows that option D is correct and option B is wrong.

It’s fair to note that although equals and hashCode are the
most fundamental methods required of classes that partici-
pate in collections, the Comparable interface, with its method
compareTo, is certainly relevant in some situations. Ordered
structures, such as the implementations of SortedSet and
SortedMap, often use it. If this were an exam question, the
fact that you’re told to select two answers should remove
any small doubt you might have had about leaving option E
unchecked. It’s worth mentioning that it’s a matter of policy:
Oracle’s Java certiication exam questions always state exactly
how many answers you should select. Be careful not to throw
points away by ignoring this advice!
Question 2. The correct answer is option D. The essence of
this question has two parts. First, the exception classes are
all checked exceptions, which means that if you rethrow the
exception caught in the multicatch (that is, in the part catch
(OneException | TwoException ex)), you must declare that
the method throws that exception type. This means that
option A is incorrect; the code does not compile as is.

The second part of the question relates to what the type of
the formal parameter ex actually is, and what the checked
exception mechanism demands for the declaration. This is
slightly trickier, and it’s where that bothersome word best in
the phrase “the best change” comes in.

In the code, ex can really have only one type, and this is
actually the closest common parent of the types listed in
the multicatch; that is BaseException. However, the checked
exception mechanism understands the multicatch syntax,
and when rethrowing ex, only those exceptions speciically
listed in the catch parameter list need to be declared in the
throws clause. Option D lists exactly the same exceptions as
the catch block, and it is the correct answer.

Finally, there’s the question of whether the other answers
are “wrong” or whether they could be cause for a complaint to
the examiners. Well, it’s certainly true that options B, C, and E
also compile. Functionally, they work perfectly well, too, and
that might tempt you to believe that they’re all equally valid.
However, checked exceptions have two consequences.

First, they put a burden on the programmer who writes
the calling code, and (except with interfaces) you should not
declare more exceptions than you might throw without a
good reason. Second, they should convey useful information
about failure modes to the caller. If you declare a more gen-
eral exception, that information is diluted or lost, which is
unhelpful and reduces readability. Both of these reasons
should tell you that options B, C, and E, all of which declare
throwing more exception classes than are actually possible,
are not as good as option D.

Of course, it’s possible that you don’t accept the reasoning
just given. Java’s checked exception mechanism is the subject
of much debate, so it’s clear that opinions difer. But most of
those who dislike checked exceptions would strongly sup-
port the notion that throwing too many exceptions is bad.
Anyway, the inal observation is that you are told to choose
one answer. So, you know that you must distinguish among
four compilable answers. You need to ind a plausible reason
to make a choice, even if you don’t personally like the reason.

Don’t be afraid to apply a little logic to separate plausible
answers from better answers. It’s probably the case that this
question would be subject to considerable scrutiny by the
exam team. Indeed, I suspect it might be rejected. My purpose
in including it here is to illustrate how logic and knowledge of
good practices can be applied to choose one “right” answer
among several answers that compile and run successfully.
Question 3. The correct answers are options B and C. This
question hinges on some knowledge about Stream API behav-
ior and the Optional class.

First, the findAny method returns an object from the

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

74

//ix this /

stream. However, the stream might be empty, and whenever
there’s a chance that a stream terminal operation might not
have anything to return, the Optional class is used to repre-
sent the result. As a side note, Optional is an API mechanism
intended to avoid null pointer exceptions. Tony Hoare, inven-
tor of null pointers, has acknowledged that these have caused
many bugs; he now refers to them as his “billion-dollar mis-
take.” To be fair, the use of special values to indicate errors or
exceptional situations is now almost universally recognized
as a bad thing, and exceptions address this issue, too.

Once you recognize that you will get an Optional from the
findAny terminal operation, you need to know how to interact
with it and get the text “Empty” from our println method
call. In this case, you know that the stream is empty and,
therefore, findAny will return an empty Optional to us.

Given an empty Optional, there are two methods intended
to directly return a value for your use. Consulting the API
documentation, you can see that these methods are orElse
and orElseGet. Both methods return the contents of the
Optional if it is not empty or an alternative value if it is
empty. The orElse version takes a simple value that is to be
returned, matching the call in option B. The orElseGet ver-
sion takes a Supplier, which is invoked in the event that
the Optional is empty. Supplier is a functional interface
that deines a method that takes no arguments and returns
a value. To create that as a lambda expression requires the
empty parentheses, followed by the arrow symbol, and then
the expression that deines what the newly supplied value
will be. That suggests the form () -> expression, or, to
return the speciic literal: () -> "Empty", which is option C.
The other options are syntactically incorrect.
Question 4. The correct answers are options A and C. Here’s
that word good again. It gives you a bit of a hint that some
level of judgment beyond whether or not something compiles
might be important here.

In this case, three options—options A, B, and C—will com-

pile. Option D fails because the assert keyword is just that: a
keyword. It’s not a method call, so the syntax there is bogus.
Also, assertTrue in option E is not part of the core Java SE
API, but the name is used in tools such as JUnit. However,
assertTrue in JUnit is a method, so it requires parentheses
and a comma rather than a colon to separate its parameters.
Option E is, therefore, wrong. As a side note, the Java exam is
about core Java features, not third-party APIs, so if you knew
what assertTrue is about, you should have rejected it from
consideration for that reason.

Of the three compilable options, two are “good” and one
is severely broken. Option A is the two-operand form of
assert; the irst operand is a boolean expression, and the
second is a text message that will become the message in the
AssertionError that is thrown if the boolean evaluates to
false. Option C uses the single-operand form, which executes
the boolean test and builds an AssertionError with a null
message if the boolean evaluates to false. Next, let’s look at
why option B is a huge error, even though it compiles.

The goal of assertions is to allow the programmer to put
certain statements about design intent into the code, in a way
that forms documentation that cannot be wrong. The bool-
ean expression that forms the required operand for an assert
must be true; otherwise, the assert is expected to complain.
These little statements can be very helpful when picking up
code that someone else wrote; they can tell all sorts of use-
ful details about how the code works. However, because the
expression in the assertion seemingly must be evaluated
every time the program runs past the statement, it’s possible
to be concerned that the CPU usage of all these little tests
could adversely afect performance.

A performance concern like that would probably discourage
most programmers from using assertions freely. However,
assertions have a neat trick: the code of assert statements
can be stripped from the bytecode during classloading. If
this happens, the statements have zero performance impact.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html
http://docs.oracle.com/javase/8/docs/api/java/util/Optional.html

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

75

//ix this /

It turns out that stripping them is the default behavior.
So, you must explicitly use the command-line option -ea,
or -enableassertions, for the assertions to be executed.
(Unfortunately, IDEs also generally duplicate this default.)

The intention is that programmers always test their code
with -ea in efect and that the user runs the inal program
without it. That creates an elegant “best of both worlds”
situation that, in my view, gets far less use than it should.

Of course, this “conditional execution” also creates an
interesting potential problem. Imagine that the boolean
expression in your assertion actually does something of
computational signiicance. It has a side efect and changes
something in some way. Now you have the makings of a
disaster; the functional behavior changes depending on
whether you run in development mode (with -ea) or produc-
tion mode (without it). The documentation of assert goes to
great lengths to point out that side efects of any kind must
be avoided in an assert statement. For this reason, option B is
bad and, therefore, incorrect.

The Java Language Speciication, in section 14.10, notes,
“Because assertions may be disabled, programs must not
assume that the expressions contained in assertions will be
evaluated. Thus, these boolean expressions should gener-
ally be free of side efects.” You can ind more discussion
on safe and appropriate uses of assert here. Notice that in
that document, there are other do’s and don’ts, which is why
the question in this quiz asks “which might be good uses...,”
rather than “which are good uses....” Options B, D, and E
cannot possibly be good; the other two might be if other
conditions are met, but no information is available on those
issues. </article>

Simon Roberts created the Sun Certiied Java Programmer and

Sun Certiied Java Developer exams. He wrote several Java certii-

cation guides and is now a freelance educator at many large com-

panies. He remains involved with Oracle’s Java certiication.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html
http://oracle.com/java

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2016

76

//contact us /

Comments
We welcome your comments, correc-

tions, opinions on topics we’ve covered,

and any other thoughts you feel impor-

tant to share with us or our readers.

Unless you speciically tell us that your

correspondence is private, we reserve

the right to publish it in our Letters to

the Editor section.

Article Proposals
We welcome article proposals on all

topics regarding Java and other JVM

languages, as well as the JVM itself.

We also are interested in proposals for

articles on Java utilities (either open

source or those bundled with the JDK).

Finally, algorithms, unusual but useful

programming techniques, and most other

topics that hard-core Java programmers

would enjoy are of great interest to us,

too. Please contact us with your ideas

at javamag_us@oracle.com and we’ll

give you our thoughts on the topic and

send you our nifty writer guidelines,

which will give you more information

on preparing an article.

Customer Service
If you’re having trouble with your

subscription, please contact the

folks at java@halldata.com (phone

+1.847.763.9635), who will do

whatever they can to help.

Where?
Comments and article proposals should

be sent to our editor, Andrew Binstock,

at javamag_us@oracle.com.

While it will have no inluence on

our decision whether to publish your

article or letter, cookies and edible treats

will be gratefully accepted by our staf

at Java Magazine, Oracle Corporation,

500 Oracle Parkway, MS OPL 3A,

Redwood Shores, CA 94065, USA.

 Subscription application

 Download area for code and

other items

 Java Magazine in Japanese

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
mailto:java%40halldata.com?subject=
mailto:javamag_us%40oracle.com?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
https://bitbucket.org/javamagazine/magdownloads/wiki/Home
https://bitbucket.org/javamagazine/magdownloads/wiki/Home
http://www.oracle.com/technetwork/jp/articles/java/overview/index.html

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

	
	JavaMag_JA16_cover
	JavaMag_JA16_pg1
	JavaMag_JA16_pg2
	JavaMag_JA16_pg3_Zeroturnaround
	JavaMag_JA16_pg4-5
	JavaMag_JA16_pg6-8
	JavaMag_JA16_pg9-10
	JavaMag_JA16_pg11
	JavaMag_JA16_pg12_OraclePress
	JavaMag_JA16_pg13-14
	JavaMag_JA16_pg15_JetBrains
	JavaMag_JA16_pg16
	JavaMag_JA16_pg17-24
	JavaMag_JA16_pg25-30
	JavaMag_JA16_pg31-36
	JavaMag_JA16_pg37-42
	JavaMag_JA16_pg43-48
	JavaMag_JA16_pg49-55
	JavaMag_JA16_pg56-61
	JavaMag_JA16_pg62-70
	JavaMag_JA16_pg71-75
	JavaMag_JA16_pg76

